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Preface

The works of Jaak Peetre constitute the main body of this treatise. Important
contributors are also J.L. Lions and A.P. Calderén, not to mention several
others. We, the present authors, have thus merely compiled and explained the
works -of others (with the exception of a few minor contributions of our own).

Let us mention the origin of this treatise. A couple of years ago, J. Pectre
suggested to the second author, J. Lofstrom, writing a book on interpolation
theory and he most generously put at Lofstrom’s disposal an unfinished manu-
script, covering parts of Chapter 1—3 and 5 of this book. Subsequently, Lofstrom
prepared a first rough, but relatively complete manuscript of lecture notes. This
was then partly rewritten and thouroughly revised by the first author, J. Bergh,
who also prepared the notes and comment and most of the exercises.

Throughout the work, we have had the good fortune of enjoying Jaak Peetre’s
kind patronage and invaluable counsel. We want to express our deep gratitude
to him. Thanks are also due to our colleagues for their support and help. Finally,
we are sincerely grateful to Boel Engebrand, Lena Mattsson and Birgit Héglund
for their expert typing of our manuscript.

This is the first attempt, as far as we know, to treat interpolation theory fairly
comprehensively in book form. Perhaps this fact could partly excuse the many
shortcomings, omissions and inconsistencies of which we may be guilty. We beg
for all information about such insufficiencies and for any constructive criticism.

Lund and Géteborg, January 1976

Joran Bergh Jorgen Lofstrom



Introduction

In recent years, there has emerged a new field of study in functional analysis:
the theory of interpolation spaces. Interpolation theory has been applied to other
branches of analysis (e.g. partial differential equations, numerical analysis,
approximation theory), but it has also attracted considerable interest in itself.
We intend to give an introduction to the theory, thereby covering the main
elementary results.

In Chapter 1, we present the classical interpolation theorems of Riesz-Thorin
and Marcinkiewicz with direct proofs, and also a few applications. The notation
and the basic concepts are introduced in Chapter 2, where we also discuss some
general results, e.g. the Aronszajn-Gagliardo theorem.

We treat two essentially different interpolation methods: the real method and
the complex method. These two methods are modelled on the proofs of the
Marcinkiewicz theorem and the Riesz-Thorin theorem respectively, as they are
given in Chapter 1. The real method is presented, following Peetre, in Chapter 3;
the complex method, following Calderén, in Chapter 4.

Chapter 5—7 contain applications of the general methods expounded in
Chapter 3 and 4.

In Chapter 5, we consider interpolation of L, -spaces, including general
versions of the interpolation theorems of Riesz-Thorin, and of Marcinkiewicz,
as well as other results, for instance, the theorem of Stein-Weiss concerning the
interpolation of L ,-spaces with weights.

Chapter 6 contains the interpolation of Besov spaces and generalized Sobolev
spaces (defined by means of Bessel potentials). We use the definition of the Besov
spaces given by Peetre. We list the most important interpolation results for these
spaces, and present various inclusion theorems, a general version of Sobolev’s
embedding theorem and a trace theorem. We also touch upon the theory of semi-
groups of operators.

In Chapter 7 we discuss the close relation between interpolation theory and
approximation theory (in a wide sense). We give some applications to classical
approximation theory and theoretical numerical analysis.

We have emphasized the real method at the expense of a balance (with respect
to applicability) between the real and the complex method. A reason for this is
that the real interpolation theory, in contrast to the case of the complex theory,
has not been treated comprehensively in one work. As a consequence, whenever
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it is possible to use both the real and the complex method, we have preferred to
apply the real method.

In each chapter the penultimate section contains exercises. These are meant
to extend and complement the results of the previous sections. Occasionally,
we use the content of an exercise in the subsequent main text. We have tried to
give references for the exercises. Moreover, many important results and most of
the applications can be found only as exercises.

Concluding each chapter, we have a section with notes and comment. These
include historical sketches, various generalizations, related questions and refer-
ences. However, we have not aimed at completeness: the historical references
are not necessarily the first ones; many papers worth mention have been left out.
By giving a few key references, i.e. those which are pertinent to the reader’s own
further study, we hope to compensate partly for this.

The potential reader we have had in mind is conversant with the elements
of real (several variables) and complex (one variable) analysis, of Fourier analysis,
and of functional analysis. Beyond an elementary level, we have tried to supply
proofs of the statements in the main text. Our general reference for elementary
results is Dunford-Schwartz [1].

We use some symbols with a special convention or meaning. For other notation,
see the Index of Symbols.

f(x)~g(x) “There are positive constants C,; and C, such that C,g(x)<f(x)<
C,g(x) (fand g being non-negative functions).”
Read: f and g are equivalent.

T:A-B  “T is a continuous mapping from 4 to B.”

Ac<B “A is continuously embedded in B.”
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Chapter 1

Some Classical Theorems

The classical results which provided the main impetus for the study of inter-
polation in se are the theorems of M. Riesz, with Thorin’s proof, and of
Marcinkiewicz. Thorin’s proof of the Riesz-Thorin theorem contains the idea
behind the complex interpolation method. Analogously, the way of proving
the Marcinkiewicz theorem resembles the construction of the real interpolation
method. We give direct proofs of these theorems (Section 1.1 and Section 1.3),
and a few of their applications (Section 1.2 and Section 1.4). More recently,
interpolation methods have been used in approximation theory. In Section 1.5
we rewrite the classical Bernstein and Jackson inequalities to indicate the con-
nection with approximation theory.

The purpose of this chapter is to introduce the type of theorems which will
be proved later, and also to give a first hint of the techniques used in their proofs.
Note that, in this introductory chapter, we are not stating the results in the more
general form they will have in later chapters.

1.1. The Riesz-Thorin Theorem

Let (U, u) be a measure space, u always being a positive measure. We adopt the
usual convention that two functions are considered equal if they agree except on
a set of y-measure zero. Then we denote by L (U, dp) (or simply L,(du), L(U) or
even L,) the Lebesgue-space of (all equivalence classes of) scalar-valued py-meas-
urable functions f on U, such that

ty) 1, =(ul f )P dp)t?

is finite. Here we have 1<p<oco. In the limiting case, p=o0, L, consists of all
p-measurable and bounded functions. Then we write

@ IS L .=supylf(x)].

In this section and the next, scalars are supposed to be complex numbers.
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Let T be a linear mapping from L,=L,U,dp) to L,=L,(V,dv). This means
that T(af+Bg)=aT(f)+ BT{g). We shall write

T:L,—~L,
if in addition T is bounded, i.e. if

M=sup; 4ol Tf /1 Iz,

is finite. The number M is called the norm of the mapping T.
Now we have the following well-known theorem.

1.1.1. Theorem (The Riesz-Thorin interpolation theorem). Assume that py#p;,
qo#4, and that

T:L,(U,dw—L,(V,dv)
with norm M, and that
T:L,(U,dwy—L, (V,dv)
with norm M,. Then
T:L(U,du—LyV, dv)
with norm
€) M<My™°M]
provided that 0<8<1 and

1 1—-6 6 1 1-6 6
4) —= +—, —-= +—.
P Po D1 q do 41

Note that (3) means that M is logarithmically convex, i.e. logM is convex.
Note also the geometrical meaning of (4). The points (1/p, 1/q) described by (4)

R
g {1,1)

o

Fig. 1
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are the points on the line segment between (1/pg, 1/9,) and (1/p,, 1/q,). (Ob-
viously one should think of L, as a “function” of 1/p rather than of p.)

Later on we shall prove the Riesz-Thorin interpolation (or convexity) theo-
rem by means of abstract methods. Here we shall reproduce the elementary
proof which was given by Thorin.

Proof : Let us write
<k, g> =y hy)g(y)dv
and 1/¢'=1—1/q. Then we have, by Holder’s inequality,

IRl =sup{l<h, g>I: gl =1}

and

M=sup{KTf,Pl: 1 flL,=lgl., =1}

Since p<w,q <oo we can assume that f and g are bounded with compact
supports.
For O0<Rez<1 we put

1 1—z z 1 1—z =z

D o b 40 0 &

and
P(2)=o(x, )= f()PPO f(Nf(x), xeU,
Y@=y, 2)=lgWI"" D g)/lg),  yeV.

It follows that ¢(z)eL, and Y(z)eL, and hence that To(z)eL,,, j=0,1. It
is also easy to see that q)(z)eLp , Y (z)eL and thus also that (T(p) (2)eL,;,
(0<Rez<1). This implies the existence of

F(z2)={To(z), y(z)>, O<Rezkl1.

Moreover it follows that F(z) is analytic on the open strip O0<Rez<1, and
bounded and continuous on the closed strip O<Rez<1.
Next we note that

1ol L,, =ILf PPN, = f1Er=1,
(1 +’t)“Lp =} |f|1’/171“Lpl _ ||f”p/p1 =1,

and similarly

IR, =l +inl.,, =1.
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By the assumptions, we therefore have
IFGOI< [ TolD)] L, iDL, <M,
F(+i) < To( +i0)],, W +i0)l,, <M, .
We also note that
pO)=f, Y=g,
and thus
“ F(O)=<Tf,g> .

Using now the three line theorem (a variant of the well-known Hadamard three
circle theorem), reproduced as Lemma 1.1.2 below, we get the conclusion

KTf, gol< My ™M1,
or equivalently
M<My*M¢. O

1.1.2. Lemma (The three line theorem). Assume that F(z) is analytic on the open
strip O0<Rez<1 and bounded and continuous on the closed strip O0<Rez<1. If

we then have
|[F(O+it))| <MY M, —w<t<w.

Proof: Let ¢ be a positive and 4 an arbitrary real number. Put
F(z)=explez? + Az) F(z) .

Then it follows that
F(2)»0 as Imzo +cw,

and
[Fl<M,, |F(1+it)| <M.

By the Phragmén-Lindeldf principle we therefore obtain

|F(2)| S max(M,, M,e**%),
ie.,

[F(0+it)| <exp(—&(62 — 2)) max(M e~ % M, et ~94+3)



1.2. Applications of the Riesz-Thorin Theorem
This holds for any fixed 6 and ¢. Letting ¢—»0 we conclude that

[F(0+it) <max(Mop~°% M,p' %)

where p=expA. The right hand side is as small as possible when M p~ =M p' %,

i.e. when p=M,/M,. With this choice of p we get

IFO+in| <ML °M?. 0

1.2. Applications of the Riesz-Thorin Theorem

In this section we shall give two rather simple applications of the Riesz-Thorin
interpolation theorem. We include them here in order to illustrate the role of
interpolation theorems of which the Riesz-Thorin theorem is just one (albeit

important) example.

We shall consider the case U=V=IR" and du=dv=dx (Lebesgue-measure).

We let T be the Fourier transform & defined by

(FNE=1 Q=] fexp(—i{x, )dx,

where (x,&>=x,&+ - +x,&,. Here x=(x,...,x,) and &=({,,..

we have

IFOI<[1f(ldx

and by Parseval’'s formula
[1Z F(O1FdE=Qmy || f(x)|dx .

This means that

A

norm 1,

W

:L,—L
L

#:L,~»L,, norm (2m)"%.

Using the Riesz-Thorin theorem, we conclude that
1) F:L,~L,

with

1-0

1 1-—
= o =—+Q, 0<f<1.
oo 2

1_1-6.06 1
p 1 2 ¢

Eliminating 6, we see that 1/p=1—-1/q, i.e, g=p’, where 1<p<2

.,¢,). Then

. The norm

of the mapping (1) is bounded by (2m)"®?=(2x)"?". We have proved the follow-

ing result.
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1.2.1. Theorem (The Hausdorff-Young inequality). If 1<p<2 we have

1Zfle, <CO™ | fl,. O

As a second application of the Riesz-Thorin theorem we consider the con-
volution operator

Tf()={k(x—y) f()dy=k+[f(x)

where k is a given function in L,. By Minkowski’s inequality we have

1T e, <kl 1S 0L,

and, by Holder’s inequality,

NS < IRl I S N, -

Thus
T:L,~L,,
T:L,—L,,
and therefore
T:L,~L,
where
1 1-6 0 1 1-6 8
PR A R

Elimination of 0 yields 1/g=1/p—1/p’ and 1<p<p’. This gives the following
result.

1.2.2. Theorem (Young's inequality). If keL, and feL, where 1<p<p' then
kxfeL, for 1/q=1/p—1/p" and

lk*fle,<iklp, [N, O

1.3. The Marcinkiewicz Theorem

Consider again the measure space (U, u). In this section the scalars may be real
or complex. If f is a scalar-valued p-measurable function which is finite almost
everywhere, we introduce the distribution function m(o, f) defined by

mio, f)=u({x:|f(x)|>0c}).
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Since we have assumed that p is positive, we have that m(o, f) is a real-valued
or extended real-valued function of ¢, defined on the positive real axis R, =(0, o).
Clearly m(s, f) is non-increasing and continuous on the right. Moreover, we have

(1) £y, =@5 oPm(o, f)da/a)? if 1<p<co,
and
2 I, =inf{o: m(o, f)=0}.

Using the distribution function m(g, f), we now introduce the weak L -spaces
denoted by L¥. The space L}, 1<p<co, consists of all f such that

[/ llLy =sup,om(a, f)}"?< 0.

In the limiting case p=co we put L% =L,. Note that | f|, is not a norm if
1<p< . In fact, it is clear that

G) m(o, f +g)<m(a/2,f)+m(c/2,9) .

Using the inequality (a+b)'?<a'?+ b1, we conclude that

1S +4lliy <201 Ny + lghsy) -

This means that L is a so called quasi-normed vector space. (In a normed space
we have the triangle inequality |f+g| <|fll+]gl, but in a quasi-normed
space we only have the quasi-triangle inequality || f+gl <k(|f | +gl) for some
k=1) If p>1 one can, however, as will be seen later on, find a norm on L} and,
with this norm, L% becomes a Banach space. One can show that L} is complete
but not a normable space. (See Section 1.6.)

The spaces L} are special cases of the more general Lorentz spaces L,,. In their
definition we use yet another concept. If f is a y-measurable function we denote
by f* its decreasing rearrangement

4) f¥t)=inf{o: m(s, f)<t}.

This is a non-negative and non-increasing function on (0, co) which is con-
tinuous on the right and has the property

5 mlp, f*)=mlp,f), p=0.

(See Figure 2)) Thus f* is equimeasurable with f. In fact, by (4) we have
S*m(p, f)<p and thus m(p, f*)<m(p, /). Moreover, since f* is continuous on
the right, f*(m{p, /*))<p and hence m(p, /)< m(p, f*).

Note that at all points ¢t where f*(t) is continuous the relation o= f*(t) is
equivalent to t=mfa, f).
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m(o,f)

Fig. 2

Now the Lorentz space L, is defined as follows. We have feL
if and only if

pro 1<p<“%

“f”;.,,=(j&"(t””f*(t))’dt/t)”’< oo when 1<r<ow,
£, =sup,t"" f*(t)<oo when r=co.

We have the following, with equality of norms,

L,=L,
1<p<g o
pr:L:

These statements are implied by (1), (2), (4) and (5); only the last one is not im-
mediate when 1< p<oo. If for a given o there is a t such that f*(t)=0¢ then by (4)
we have m(o,f)<t. Thus om(f, 6)""?<t'? f*() which implies [ fli.,<|fll,.-
On the other hand, given ¢>0, we can choose t as a point of continuity of f*(¢)
such that || f|,, <t'?f*t)+e Put o=f*@). Then m(o, f)=t and | fl|,, <
tVP fXt)+e=0mlo, /)P +e<| f|,+e which completes the proof. [

In general L, is a quasi-normed space, but when p>1 it is possible to re-
place the quasi-norm with a norm, which makes L, a Banach space. (See Sec-
tion 1.6.)

It is possible to prove that L, <L,, if r;<r,. (See Section 1.6.) Taking
r,=p and r,=c0 we obtain, in particular,

6) L,cL.
This also follows directly from the definition (3) of L¥. In fact,

1S I, =5uPy(fi sy > o f (X)PAR)'? = sUD, (0, f)!1P= 1]y -
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We shall consider linear mappings T from L, to LY. Such a mapping is said
to be bounded if |Tf (., <C|f[,,, and the infimum over all possible numbers
C is called the norm of T. We then write T:L,—L¥. We are ready to state and
prove the following important interpolation theorem.

1.3.1. Theorem (The Marcinkiewicz interpolation theorem). Assume that p,+#p,
and that

T:L,(U,dw—L}(V,dv) with norm MY,
T:L,(U,dw)— L} (V,dv) with norm M¥.

Put
1 1-6

14 Do

1 1-0 8

0
+~_a S
P1 q 40 4

and assume that

T:L(U,du)— LV, dv)
with norm M satisfying
ML CME —OM*

This theorem, aithough certainly reminiscent of the Riesz-Thorin theorem,
differs from it in several important respects. Among other things, we note that
scalars may be real or complex numbers, but in the Riesz-Thorin theorem we
must insist on complex scalars. (Otherwise we can only prove the convexity
inequality M <CM}~°M?) On the other hand, there is the restriction (7). The
most important feature is, however, that we have replaced the spaces L, and
L,, by the larger spaces L} and L} in the assumption. Therefore the Marcin-
kiewicz theorem can be used in cases where the Riesz-Thorin theorem fails.

Proof : We shall give a complete proof of this theorem in Chapter 5 (see Theo-
rem 5.3.2). Here we shall consider only the case p,=4¢,, p; =¢;, and 1 <p,<p, <co,
and non-atomic measure on, say, R".

Moreover, we shall prove only the estimate

M <Cmax(M¥, M¥).

In order to prove this, it will clearly be sufficient to assume that M <1 and
M¥<1.

Put )
f)y if xeE,

0  otherwise,

Jo(¥)=folt, x) = {
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and
J1x)=f1(t, x)= f(x)— folt, %),
where Ec{x:|f(x)|= f*(@)} is chosen with p(E)=min(t, w(U)).
Using (3) and the linearity of T, we see that

(THO<(TS)* /D +(Tf)*/2).
By the assumptions on T we have

(TAR*/2<Ct™ P filly, »  i=0,1.
It follows that

ITf L, =5 (TA*)Pd)'P<Cl,+1,),
where

lo= (R I fols o) = ([~ fo ()P dsp/rodn,

Lpy

and
L=([ @ SR Y dn e = ([ [ X(s)P ds)Prde)'e .
In order to estimate I, we use Minkowski’s inequality to obtain
Ig =[5 (fo(f*ta)yeda)y™dt < ([5([5(f (to)r deyePdoy < C| f117,, -
In order to estimate I,, we use the inequality
®) f0 ! o (9dsf di<Cle(o*e)Pds, 0<O<1.

Using this estimate with G=p/p, and ¢@=|f|"", we obtain, noting also that
(p* =(f*)171,

<ClfI,-
Thus

ITA N, <ClIfIL,
which concludes the proof. It remains, however, to prove (8).

In order to prove (8) we put a,=@*(2"*). Since ¢*(t) and t‘lj,“’ @*(s)ds are
decreasing functions of ¢, we have

(e [P o*@)ds’di<CY2 (27 ,5,a,242".

Since (x+y)?<x®+3? for 0<f<1, we can estimate the right hand side by a
constant multiplied by

Zv ZquZ(l —O)va‘6‘29u = Zﬂazzué‘zv;uzv(l -0
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It follows that

fe@ [P o*s)ds)dt<C),al2* < CF(p*(s))’ds. O

14. An Application of the Marcinkiewicz Theorem

We shall prove a generalization of the Hausdorff-Young inequality due to
Payley. We consider the measure space (R”, ), u Lebesgue measure. Let w be a
weight function on R” i.e. a positive and measurable function on IR". Then we
denote by L ,(w) the L -space with respect to wdx. The norm on L, (w) is

1S 11w = (Jn LS (P W(x)dx) 2.
With this notation we have the following theorem.
1.4.1. Theorem. Assume that 1<p<2. Then
M IF [ L qg-re-y <Gl f L, -
Proof: We consider the mapping
(TNE=IEI"] ().
By Parseval's formula, we have
ITS g -2 =1 1L, <SCUf I, -
Since L%(|&|~2") > L,(|¢|~2"), we conclude that
@ T: L~ L5(¢17%").
We now claim that
3) T:L,—L¥(€17%).
Applying the Marcinkiewicz interpolation theorem we obtain
T:L,~L,(&7*")

which implies the theorem.
In order to prove (3) we consider the set

E,={& P f (&) >0},
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Let us write v for the measure |£| >"d¢ and assume that [ ff,, =1. Then
I (©)I<1. For {(cE, we therefore have g<|£|". Consequently

m(a, Tf)=WE,) = [, 1§ 2"dE < figns,1E]72"dE<Co™ .
This proves that

omio, TA)SC| fl,
i.e. (3) holds. 1O

1.5. Two Classical Approximation Results

A characteristic feature of interpolation theory is the convexity inequality
M<M{°M?. When an inequality of this form appears there is often a connec-
tion with interpolation theory. In this section we rewrite the classical Bernstein
inequality as a convexity inequality, thereby indicating a connection between
classical approximation theory and interpolation theory. Also, the converse
inequality, the Jackson inequality, is reformulated as an inequality which is
“dual” to the convexity inequality above. These topics will be discussed in greater
detail in Chapter 7.

Let T be the one-dimensional torus. Then we may write Bernstein’s ine-
quality as follows:

(1) Sup‘l" IDja(x)‘ S njsup'l' Ia(x)] ’ .]=O> 132’ LR}

where a is a trigonometric polynomial of degree at most n. In order to reform-
ulate (1), put

A, = {trigonometric polynomials},

A, = {continuous 2n-periodic functions},

A,={2n-periodic functions a with Diae A}, 6=1/(j+1),

llall 4, =(the degree of @)'/U* V),
lall 4, =supla()| v+,

lall 5, = supy |Dla(x)| 16+ b,

Note that the last three expressions are not norms. In addition, scalar multi-
plication is not continuous in |-|| ,,. With this notation, (1) may be rewritten as

1) lall < lali; ®laly,, 0<0<t, aedonA,.
Clearly, (1') resembles, at least formally, the convexity inequalities in the theo-
rems of Riesz-Thorin and Marcinkiewicz. The other classical inequality is of

Jackson type:

@ inf supyla(x)—ao(x)|< Cn™'supy|Dla(x)l,
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where “inf” is taken over all trigonometric polynomicals a, of degree at most n,
and a is a j-times continuously differentiable 2z-periodic function. Using the
notation introduced above and writing a,=a—a, Wwe have the following
version of (2):

for each ae A, and for each n there exist aye A, and a € A,, with ag+a,=a
(€Ay+A,), such that

lagll 4o <Crllall 4,
@) (0<0<1)
lagla, <Cn®"Hal,,

Evidently, (2') is, in a sense, dual to (1').

1.6. Exercises

L. (a) (Schur [1]). Let [,={x=(x); x,eC, (12, Ix/")"""< o0}, 1<p< o0, with

the norm IIXHI,,=(ZE";1|X,~|")””, xll;,, =max;|x;. Let 4=(a;);=;, a;;€C, be a
matrix. Show (without using Riesz-Thorin) that

Al -1 o Aol
Azl =1,
and that

I, <Al 1Al 2

©

holds for the norms of A.

Hint: Write |a;j=la;]"**|a;|'”* and use the Cauchy-Schwarz inequality.

13

(b) Show that if
nla,| <M,
Yilanl <M,
then A:1,—1, (1<p<co) and
[ All, <CMPM{P

Hint: Prove that 4:1 >},

(c) Show that the conclusion in (a) may be strengthened to A:[,—1, and

Al <Al 4l2  (1<p<o).
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2. (F. Riesz [1]). In the notation of the previous exercise, show that if 4 is uni-
tary, i.e.

Y2, a,;8,;=0, (Kronecker delta),

and sup, ;la;;| is finite then
Al~L, 1<p<2, 1/p+1/p'=1.
Moreover, prove that for the norms
“AHIP—»IP,<Supi,j]aijlllp_l/p' .

(Cf. the Hausdorff-Young theorem.)
Hint: Show that A:l,-I_ and A:l,—1,.

3. Let feL,(T), T being the one dimensional torus, 1<p<oco, and assume
that f has the Fourier series

f~ Z:; —cocneinx ‘

For a given sequence A=(4,)2 let Af be defined by the Fourier series

n= -

© /1 c einx

Put
my={A: 1Af1,<CIf1, forall feL,(T)},

and let [|4]|,, denote the norm of the mapping f—4f. Show that, with 1/p+1/p'=1,
(i) my=m,, 1<p<o0;
(i) Aem, <Y, 14,|<o0;
(ili) Aem, <> sup,|4,[<o0;
(iv) if Aem, nm,, 1<p,, p; < then Aem,,
and

2]y < 1 Ay, 1l Al
where

1 1-6 6
P Do ;1_

, 0O<f8<1.

Hint: Apply Holder’s inequality to the integral {3*Af(x)g(x)dx.
4. (M. Riesz [2]). Prove that if 1<p<oo and feL,, with

f)~%a0+ Y. 1a,cosnx+b,sinnx  (a,,b,eR),
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then the conjugate function f' eL,, with

f(x)~Y2  a,sinnx—b,cosnx,
and
1, <Clf e, -

Show that this result is equivalent to iem,, 1 <p<co, where

] 1, n>0
"0, n<O0.

Hint: (i) Apply Cauchy’s integral theorem to show that, for p=2,4,6,...,
= (fx)+i f(x)P dx=mna,. Consider the real part.

(i) Note that Af=f+if, in some sense.

(iil) Use Exercise 3 to get the whole result.

5. (@) (M. Riesz [2]). With feL(T) (1<p<oo) as in Exercise 3, define the
Hilbert transform of f on T by

f)

[—expli—y)

Hf(x)=x

where the integral denotes the Cauchy principal value. Show that, with 1 as in
Exercise 4, A—L=4. Use this to establish that

1 fll, <Cllfle,, 1<p<co.

Hint: Apply the residue theorem of complex function theory.
(b) (O'Neil-Weiss [1]). Consider now the real line R and define the Hilbert
transform 4 by

bR

__dy,
x=y

H ()= [g

where the integral is the Cauchy principal value. Let E be a Lebesgue-measurable
subset of R with finite measure |E|. Then

(#xp)*(t)=n""sinh " 1(2|E|/).
Prove that this implies that if the integral

§& f*(@ysinh ™ (1/1)dt
is finite then
ﬁ)(‘yff)*(s)dsgzn—lf{'ff*(t)sinh‘l(s/t)dt» (s>0).
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Use this inequality to obtain

H:L,~»L, (I<p<co).
6. Show that L, defined in Section 1.3 is complete if 1<p<oo and 1<r<ow

or if p=r=1,00; and that If+gle,,. <Ifl, +lgll, il 1<r<p<oo or
p=r=o0. For which p and r is L,, a Banach space?

Hint: For the completeness, prove and apply the Fatou property: if 0<f,1f
and sup,| f,l,, is finite then feL, and m, ([ falle,, =1L, -

To prove the triangle inequality, note that formula (5) in Section 1.3 is equiv-
alent to the formula

[ f*(x)dx = SUP ey < Jul f()dx, >0
and thus, with he L® non-negative and decreasing, that

JoRO)(f + g (x)dx < [y h(x) f *(x)dx + [, h(x) g*(x)dx, >0,
holds.

7. (O'Neil [1]). Prove that if 1<p<co, 1 <r<oo, and feL, then, with
f*O=t"" o f*s)ds, >0,

AL, =1, »

[-IL,, is @ norm on L,, and [ f(L, ~Ifll., (e, there exist positive constants
Ci, G, such that the inequalities G, | f |, <[/ N}.,,,S Gl fllz,, hold for all feL,).

Hint: Apply Hardy’s inequality (see Hardy ez al. [1])
§ @t~ fo fH(s)dsy dt/t<C,, [3 (VP f*@)Y dtft .

8. (Lorentz [2]). Show that if 1<r, <r,<o0 and 1<p<co then
L, <L,,.

Hint: Prove first the result for »,=co. To this end, note that
M X <C, [y sVP fXs)ds/s,  t>0.

9. (Hunt [1]). Prove that the restriction p<gq in the Marcinkiewicz theorem is
indispensable.

Hint: Consider (0, c0) with Lebesgue measure. Put

Tf(x)=x"""'f5 f()dt, a>0,
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and verify that

(TAPFX)<x™*f**(x),
(TfPFX)Zx"*f*x) if f=f*.

Choose a=1/q,—1/p;, i=0,1, and use the results in the two previous
exercises to show that there is a function fel, for which Tf¢L,, where p>gq
are chosen as in the Marcinkiewicz theorem.

10. Prove that if 1<p<2,1/p'=1—1/p and p<g<p’ then

IF g —ney S Cpgl f L,

where p=1-—gq/p.
Hint: Apply 1.2.1 and 1.4.1.
11. (Stein [1]). Consider a family of operators T,, such that T,f is a vector-

valued analytic function of z for O<Rez<1 and continuous for 0<Rez<1
for each fixed f in the domain. Prove that if

T Lpo_*qu’

iy
Tl+iy: pr_’qu ’
with max(log| T;,li, log{ T, ; ;,|) < CeP!, 0<a<m, then
Ty:L,—L,

with [| T <O, I T.I, | Ty +:.1) where 1/p=(1—6)/po+6/p,, 1/q=(1—0)/q0+06/q,,
0<6<1, and his bounded in 0<f<1 for fixed T,. (| T..| denotes the function.)

Hint: Adapt the proof of Theorem 1.1.1, using a conformal mapping.
12. (Stein-Weiss [1]). Assume that

T: L, (U, duo)—~ L, (V, dv,),
T:L, (U, dp)—~L,(V,dv,).

Then show that
T:L(U,duw—L(V,dv),
with norm
M<ML~°M?,
provided that
Up=(1-0)/po+06/p,, 1/q=(1-0)/q,+6/q,
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and

_,p(1-8 8, __,p(1-8 6,
I —IIS( )/pouf /p1 , y= vg( )/ po v{’ /p1_

The last two equations mean that u, and u, are both absolutely continuous
with respect to a measure o, i.e., flo=w,0, u;=w,0 and pu=w}h ~MrogPirig
Similarly for vy, v, and v.

Hint: Use the proof of the Riesz-Thorin theorem, and put

fx)

(p(z)=(p(x, z)=lf(x)]”/"(” CO(X)UP(Z)COO(X)—(I —z)/powl(x)—z/m ,

|f ()]
and choose y{z) analogously.
13. (Thorin [2]). Assume that (with L,=L (U, duw))
T: LPSO) X LP&O) XX LP,‘;O)_}LQO’
T: Lp(‘n X L,,Sx) X X LPL”—’L‘II'
Then show that
T:L, xL,,xxL, L,
with norm

M<ML=°M?

where 1/p,=(1-0)/p{”+60/p", 1/q=(1-6)/q,+0/q,, and 0<O<1.
Hint: Adapt the proof of Theorem 1.1.1.

14. (Salem and Zygmund [1]). Let f be holomorphic in the open unit disc and
O<p< 0.
Then we write fe H, (Hardy class) if the expression

1f I, =8uPo <, <1 (J371f (re®)?d6)""?

is finite. Show that if

T HPO_*L% ’

T:H,-L,
then

T: Hp—>Lq
with norm

M<ML~oM°
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where 1/p=(1—0)/po+0/py, 1/a=(1—0)/go+0/d,, 0<O<1, 0< pg, py <00, 1< o,
gy s 00.

Hint: Note the fact, due to F.Riesz, that every feH, admits a factorization
f=Bg, where B is a Blaschke product with the same zeros as f, and geH, has
no zeros in the disc. Moreover, reformulate Exercise 4 as follows: If p>1 then
H, is a complemented subspace of L,. Write r for the corresponding projection
and consider the mapping

F:L, x--xL, -H,
where 1/p=3"_,1/p, and p;>1,i=1,2,...,n, defined by

F(fi,...f)—==nfi nf,...nf,

Obviously, by F. Riesz, f=¢, "' ¢,, ¢,€H,, and so f=F(¢,,...,¢,). Apply
Exercise 12 to the mapping M=T-F.

15. Write Kolmogorov's [1] inequality
sup,.g|D'a(x)| < C(sup,.gla(x))' /" (sup,glD"a(x))'",  0<1<m,

where a is m-times continuously differentiable, in the form indicated in Section 1.5.

1.7. Notes and Comment

1.7.1. An early instance of interpolation of linear operators, due to I. Schur [1]
in 1911, is reproduced as Exercise 1. He stated his result for bilinear forms, or
rather, for the matrices corresponding to the forms.

In 1926, M. Riesz [1] proved the first version of the Riesz-Thorin theorem
with the restriction p<gq, which he showed is essential when the scalars are real.
Riesz's main tool was the Holder inequality. These early results were given for
bilinear forms and /,, but they have equivalent versions in the form of the theo-
rems in the text, cf. Hardy, Littlewood and Poélya [1]. Giving an entirely new
proof, G.O. Thorin [1] in 1938 was able to remove the restriction p<q. Thorin
used complex scalars and the maximum principle whereas Riesz had real scalars
and Holder’s inequality. Moreover, Thorin gave a multilinear version of the
theorem (see Exercise 13). A generalization to sublinear operators was given by
Calder6én and Zygmund [1], another by Stein [1], and yet another with change
of measures by Stein and Weiss [1]. The latter two generalizations are found in
Exercises 11 and 12. Finally, Krée [1] has given an extension to p<1, g<1,
i.e, the quasi-normed case. Other proofs and extensions have been given by
several authors (for references see Zygmund [1]).

We reconsider the Riesz-Thorin theorem in Chapter 4 and Chapter 5, and
then in a general framework.
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1.7.2. The Hausdorff-Young inequality (Theorem 1.2.1) is a generalization of
Parseval’s theorem and the Riemann-Lebesgue lemma. (There is also an inverse
version using the Riesz-Fischer theorem; see Zygmund [1].) It was first obtained
on the torus T by W.H. Young [1] in 1912 for p’ even, and then, in 1923, for
general p by F. Hausdorff [1]. Young employed his inequality, Theorem 1.2.2,
given for bilinear forms, which he proved by a repeated application of Hoélder's
inequality. There are examples (e.g., in Zygmund [1] for the torus T) which
show that the condition p<2 is essential in the Hausdorff-Young theorem.
F.Riesz [1] in 1923 proved an analogue of the Hausdorff-Young theorem for
any orthogonal system. This is Exercise 2, where the idea to use interpolation
for the proof appeared in M. Riesz [1]. A further extension of the Hausdorff-
Young inequality to locally compact Abelian groups has been made by Weil [1].
His proof is quite analogous to the one given in the text. This proof, using inter-
polation directly, is due to M. Riesz [1]. Another generalization is discussed in
the Notes and Comment pertaining to Section 1.4.

The space m, of Fourier multipliers (Exercise 3—5) has been treated in
Hormander [1] and Larsen [1]. The Fourier multipliers are our main tools in
Chapter 6, treating the Sobolev and Besov spaces.

The use of the Riesz-Thorin theorem to obtain results about the Hardy
classes H,, (Exercise 14) was introduced by Thorin [2] and Salem and Zygmund [1].
We return to H, in Chapter 6.

Results for the trace classes €, of compact operators in a Hilbert space have
been proved analogously to the L, case by an extension of the results to non-
commutative integration, compare, for example, Gohberg-Krein [1] and Peetre-
Sparr [2].

1.7.3. The Marcinkiewicz theorem appeared in a note by J. Marcinkiewicz [1]
in 1939, without proof. A. Zygmund {2] in 1956 gave a proof (using distribution
functions) and also applications of the theorem, which can not be obtained by
the Riesz-Thorin result. Independently, Cotlar [1] has given a similar proof.
The condition p<gq is essential; this was shown by R.A. Hunt [1] in 1964, cf.
Exercise 9. Several extensions have been given. A. P. Calderén [3] gave a version
for general Lorentz spaces and quasi-linear operators, viz.,

ITASYN <k A TS ()],
IT(f+9N<kATSN+ITS (X))

where k, and &, are constants. It is not hard to see that the proof given in the
text works for quasi-linear operators too. Calderon’s version has been com-
plemented by Hunt [1]. We return to this topic in Chapter 5. See also Sargent [1],
Steigerwalt-White [1], Krein-Semenov [1] and Berenstein et al. [1].

Cotlar and Bruschi [1] have shown that the Riesz-Thorin theorem, with the
restriction p<gq, follows from the Marcinkiewicz theorem, although without the
sharp norm inequality.

The proof in the text of the Marcinkiewicz theorem is due to Bergh. The
inequality (8) seems to be new. The present proof of this inequality, using dis-
cretization, is due to Peetre (personal communication).
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The Lorentz spaces were introduced by G.G. Lorentz [1] in 1950. Later he
generalized his ideas, e.g. in [2], where the present definition may be found.
Our notation is due to R. O’'Neil [1] and Calderon [3]. In general, the Lorentz
spaces are only quasi-normed, but they may be equipped with equivalent norms.
For the details, see Exercises 6—8. A still more general type of spaces, Banach
function spaces, has been treated by W.A.J. Luxemburg [1] and by Luxemburg
and Zaanen [1]. More about the Lorentz spaces is found in the Notes and Com-
ment in Chapter 5.

1.7.4. R.E.A.C. Paley’s [ 1] sharpening of the Hausdorff-Young theorem appeared
in 1931. It has been complemented by a sharpening of Young’s inequality due
to O'Neil [1]. We deal with these questions in Chapter 5. Some of the most
important applications of the Marcinkiewicz theorem are those concerning the
Hilbert transform and the potential operator. These applications are treated in
Chapter 6 and Chapter 5 respectively.

1.7.5. The Bernstein inequality was obtained by Bernstein [1] in 1912, and the
Jackson inequality by Jackson [1] in 1912. Cf. Lorentz [3].

Interpolation of linear operators has been used to prove results about ap-
proximation of functions, of operators and, in particular, of differential operators
by difference operators. (See Peetre-Sparr [1] and Lofstrom [1] as general ref-
erences.) Chapter 7 is devoted to these questions, and we refer to this chapter
for precise statements and references.



Chapter 2

General Properties of Interpolation Spaces

In this chapter we introduce some basic notation and definitions. We discuss a
few general results on interpolation spaces. The most important one is the
Aronszajn-Gagliardo theorem.

This theorem says, loosely speaking, that if a Banach space A is an interpolation
space with respect to a Banach couple (4,, 4,) (of Banach spaces), then there is an
interpolation method (functor), which assigns the space A to the couple (A4,,4,).

2.1. Categories and Functors

In this section we summarize some general notions, which will be used in what
follows. A more detailed account can be found, for instance, in MacLane [1].

A category € consists of objects A, B, C, ...and morphisms R, S, T, . . . . Between
objects and morphisms a three place relation is defined, T: A~B. If T: A~B and
S: BAC then there is a morphism S 7, the product of S and T, such that ST: A~C.
The product of morphisms satisfies the associative law

¢3) T(SR)=(TS)R.

Moreover, for any object 4 in €, there is a morphism I=1,, such that for all
morphisms T: A~A we have

@) TI=IT=T.

In this book we shall frequently work with categories of topological spaces.
Thus the objects are certain topological spaces. The morphisms are continuous
mappings, ST is the composite mapping, [ is the identity. Usually, morphisms
are structure preserving mappings. For instance, in the category of all topological
vector spaces we take as morphisms all continuous linear operators.

Let ¢, and % be any two categories. By a functor F from #, into %, we mean
a rule which to every object 4 in €, assigns an object F(A4) in %, to every morphism
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Tin ¥, there corresponds a morphism F(T)in €. If T: A ~B then F(T): F(A) ~F(B)
and

3 F(ST)=FS)F(T),

(4) F(IA)=IF(A)'

Note that our concept “functor” is usually called “covariant functor®.

As a simple example, let % be the category of all topological vector spaces and
%, the category of all finite dimensional Euclidean spaces. The morphisms are the
continuous linear operators. Now define F(4)=A and F(T)=T Then F is of
course a functor from %, into €.

In general, let ¥ and ¥, be two categories, such that every object in €, is an
object in ¥ and every morphism in 4, is a morphism in ¥. Then we say that ¢,
is a sub-category of € if F(A)=A and F(T)=T defines a functor from %, to %.

2.2. Normed Vector Spaces

In this section we introduce some of the categories of topological vector spaces
which we shall use frequently.

Let 4 be a vector space over the real or complex field. Then A is called a
normed vector space if there is a real-valued function (a norm) ||-| , defined on 4
such that

) la|,=0, and |lall,=0 iff a=0,
@ I4all 4= |l{al,, 4 ascalar,
) lla+bll, < llall 4+ 115] 4

If A is a normed vector space there is a natural topology on A. A neighbourhood
of a consists of all b in 4 such that ||b—al| ,<¢ for some fixed ¢>0.

Let A and B be two normed vector spaces. Then a mapping T from 4 to B
is called a bounded linear operator if T(Aa)=A1T(a), T(a+b)=T(a)+ T(b) and if

I T 4, 5=sup, =0l Tallg/llall 4< 0.

Clearly any bounded linear operator is continuous. The space of all bounded
linear operators from A to B is a new normed vector space with norm |[[-|| , .

We shall reserve the letter .4 to denote the category of all normed vector
spaces. The objects of A" are normed vector spaces and the morphisms are the
bounded linear operators. Thus 4" is a sub-category of the category of all topo-
logical vector spaces.
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A natural sub-category of 4" is the category of complete normed vector
spaces or Banach spaces. Recall that a normed vector space A4 is called complete
if every Cauchy sequence (a,)y in A has a limit in A, i.e. if the condition

”an_am“A_’O as min(n,m)—*oo,
implies the existence of an element ae A4, such that
ta,—al ,~0 as n—oo.

In many cases it is preferable to prove completeness by means of the following
“absolute convergence implies convergence” test.

2.2.1. Lemma. Suppose that A is a normed vector space. Then A is complete if and
only if

Yoilaglla<oo

implies that there is an element ac A such that
la=Y"_ 1 a,j,~0 as N-co.

Proof: Suppose first that 4 is complete and that ) |la,|, converges. Clearly
(3y-,a,) is then a Cauchy sequence in 4 and thus a =) 7 a, with convergence in
A. For the other implication, suppose that (a,) is a Cauchy sequence in A4. It is
easy to see that we may choose a subsequence (a,) with Z;‘;l la,,—a,,_ 14
finite. Then it follows that ) %2, (a,,—a,,_,) convergesin 4 and thus (a, ) converges
in A too. But then (a,) also converges in 4 since it is a Cauchy sequence. [

We shall use the letter 2 to denote the category of all Banach spaces. Thus £
is a sub-category of .#". Other familiar sub-categories of 4" are the category of all
Hilbert spaces (which is also a sub-category of %) and the category of all finite
dimensional Euclidean spaces.

2.3. Couples of Spaces

Let A5 and A, be two topological vector spaces. Then we shall say that 4, and A,
are compatible if there is a Hausdorff topological vector space U such that A,
and A, are sub-spaces of . Then we can form their sum A,+ A4, and their
intersection A,nA4,. The sum consists of all ae¥W such that we can write
a=agy+a, for some a,eA, and a,eA,.

23.1. Lemma. Suppose that A, and A, are compatible normed vector spaces. Then
Ay A, is a normed vector space with norm defined by

¢y Il 4ona, =max(lla] 4, lal 4,)-
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Moreover, Ag+ A, is also a normed vector space with norm

(2) all 4o+ 4, =108, =400, (a0l 4o+ a1 1l 4,)-
If A, and A, are complete then Ayn A, and Ay+ A, are also complete.

Proof: The proof is straightforward. We shall only give the proof of the com-
pleteness of 4,+ A,. We use Lemma 2.2.1. Assume that

oz 1 10y 4+ 4, < 0.
Then we can find a decomposition a,=a?+a!, such that
a4+ g 14y <2 (1@l gg s 4, -
It follows that
::o=1|]a;?“,40<°o’ ;O=1|[ai“m<°0'
If A, and A4, are complete we obtain from Lemma 2.2.1. that ) a? converges in

Ao and Y a) converges in A;. Put a°=Ya’ and a'=Ya! and a=a+a'.
Then aeA,+ A, and since

la— §=1an“40+,41<‘lao_2f=1ar?|[/40+ lat _Z:J=1a;{ Il 46
we conclude that ), a, converges in Ao+ A4, to a. 0

Let 4 denote any sub-category of the category .4” of all normed vector spaces.
We assume that the mappings T: A— B are all bounded linear operators from A
to B. We let %, stand for a category of compatible couples A=(A,, A,), i.e.
such that 4, and A4, are compatible and such that 4,4+ A4; and A,nA4; are
spaces in 4. The morphisms T:(A4y,4;)—(By,B;) in ¥, are all bounded linear
mappings from A,+ A; to B,+ B; such that

Ty:Ao—>By, T,,:4,-B,

are morphisms in . Here T, denotes the restriction of T to A. With the natural
definitions of composite morphism and identity, it is easy to see that %, isin fact a
category. In the sequel, T will stand for the restrictions to the various subspaces of
Ay, +A,;. We have, with a=a,+a,

I Tall gy v g, SUT | 4,80 1001 4o+ 11 T4, 5, 10y 1L 4, -
Writing ||T| , p for the norm of the mapping T:4A—B, we conclude

3) T g ar. 5o 5, <X T 4o 5o 1 Tl s m)s
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and

4) 1Tl ggmay, Bonm, <SMAX([ T 40 pos | Tl 4, 8,)-

We can define two basic functors X (sum) and A (intersection) from 4, to €.
We write 2(T)=4(T)=T and

(%) AMA)=A,nA,,
(6) SA)=Ay+A,.

As a simple example we take ¥=4%. By Lemma 2.3.1 we can take as ¢,
all compatible couples (A,,4,) of Banach spaces. In fact, Lemma 2.3.1 implies
that if A, and A, are compatible, then A,+ A, and A;n A, are Banach spaces.
As a second example we take the category € of all spaces L ,, defined by the norms

e, .= J1f () wx)dx

where w(x)>0. Since L, , nL, , =L, , where w'(x)=max(wy(x),w(x)), and
since Ly, +L,,, =L, where w'(x)=min(wy(x),w;(x)), we can let €, consist
of all couples (L, ,,L; ).

As a third example we consider the category % of all Banach algebras (Banach
spaces with a continuous multiplication). €, consists of all compatible couples
(44, A;) such that A; and A, are Banach algebras with the same multiplication
and such that A4;+ A, is a Banach algebra with that multiplication. Since it
is easily seen that A, A, is also a Banach algebra, we conclude that ¢, satis-
fies the requirements listed above. (Note that 4,+ 4, is not in general a Banach
algebra.)

In most cases we shall deal with the categories ¥=4" or ¥=4%. Then ¥,
will denote the category of all compatible couples of spaces in %. This will be our
general convention. If € is any given category, which is closed under the operations
2 and 4, then ¥, denotes the category of all compatible couples.

24. Definition of Interpolation Spaces

In this section ¥ denotes any sub-category of the category .47, such that € is
closed under the operations sum and intersection. We let ¢, stand for the category
of all compatible couples A of spaces in €.

2.4.1. Definition. Let A=(A4,,4,) be a given couple in #,. Then a space 4 in%
will be called an intermediate space between A, and A, (or with respect to A) if

1 MA)c Ac Z(4)
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with continuous inclusions. The space A is called an interpolation space between
A, and A4, (or with respect to A) if in addition

) T:A-A implies T:A—A.

More generally, let 4 and B be two couples in ,. Then we say that two
spaces A and B in € are interpolation spaces with respect to A and Bif 4 and B are
intermediate spaces with respect to 4 and B respectively, and if

(3) T:A-B implies T:A-B. 1

To avoid a possible misunderstanding, we remark here that if 4 and B are
interpolation spaces with respect to 4 and B, then it does not, in general, follow
that A is an interpolation space with respect to A4, or that B is an interpolation
space with respect to B. (See Section 2.9.)

Note that (3) means that if T:4,—>B, and T:4,—B, then T:4A—B. Thus
(2) and (3) are the interpolation properties we have already met in Chapter 1.
As an example, the Riesz-Thorin theorem shows that L, is an interpolation
space between L, and L, if po<p<p;,. _ _

Clearly A(A) and A(B) are interpolation spaces with respect to A4 and B.
The same is true for X(4) and Z(B). If A=A4(A) (or 2(4)) and B= A(B) (or Z(B)),
then we have

(4) 1T 4,p<max([ T 1,5, | Tll 4,,8,)-

(See Section 2.3, Formula (3) and (4).)
In general, if (4) holds we shali say that 4 and B are exact interpolation spaces.
In many cases it is only possible to prove

5 I TIl.,p<SCmax(I T 46,50 | Tl 4,,8,)-

Then we shall say that A and B are uniform interpolation spaces. In fact, it follows

from Theorem 2.4.2 below that, when B, B,,i=0,1, are complete, A and B are

interpolation spaces iff (5) holds, i.e., (3) and (5) are then equivalent. Also, (2) and

(5) are equivalent for B=A4, B,=A,,i=0,1, when all the spaces are complete.
The interpolation spaces 4 and B are of exponent 6, (0<0<1) if

(6) 1T s<CIT 05 1T, 5. -

If C=1 we say that A and B are exact of exponent 6.

Note that (6) is a convexity result of the type we have met in Chapter 1. By
the Riesz-Thorin theorem, L, is an interpolation space between L, and L,
which is exact of exponent 6, if

1 1-6

+ ﬁ, 0<b6<1).
p Po 21
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Similarly the Marcinkiewicz theorem implies that L, and L, are interpolation
spaces with respect to (L,,L,,) and (L ,L¥). Here L, and L, are interpolation
spaces of exponent § (not exact), if

1— 1 1—68 8
116,60 1_ + =, (0<0<1).
14 Do D1 q 9o g,

We shall now discuss some simple properties of interpolation spaces.

2.4.2. Theorem. Consider the category %. Suppose that A and B are interpolation
spaces with respect to the couples A and B. Then A and B are uniform interpolation
spaces.

Proof: Consider the set of all morphisms T in %, such that T: A—B. Thus
T is also bounded and linear from A to B. Denote this set equipped with the
norm max(| Tl .5 | Tl4q. 8, T4, 8) by Ly, and equipped with the norm
max (|| T| 4,8, T4, 8) by L,. It is easily verified that L, and L, are Banach
spaces. (Use the intermediate space properties.) The identity mapping i: L, —>L,
is clearly linear, bounded and bijective. By the Banach theorem i™':L,—L,
is also bounded. This means that we have [T, z<max(|T| 57T, 5,
[Tl 4,8)<Cmax(|T| 4,5, 1Ty, 5) with C independent of T, i.e. (5) holds. [

A major objective in interpolation theory is the actual construction of inter-
polation spaces. A method of constructing such a space will be called an inter-
polation functor according to the following definition.

2.4.3. Definition. By an interpolation functor (or interpolation method) on € we
mean a functor F from €, into 4 such that if 4 and B are couples in ¢, then
F(A) and F(B) are interpolation spaces with respect to A and B. Moreover we shall
have

F(T)=T forall T:A-B. [

We shall say that F is a uniform (exact) interpolation functor if F(A) and F(B)
are uniform (exact) interpolation spaces with respect to 4 and B. Similarly we say
that F is (exact) of exponent 9 if F(4) and F(B) are (exact) of exponent 6.

By Theorem 2.4.2, any interpolation functor F on 4 is uniform. Note that
this means that

ll T”F(Z),F(E) <Cmax(| Tl 4,855 1 Tl 41,80 »

for some constant C depending on the couples 4 and B. If we can choose C inde-
pendent of A and B, we speak of a bounded interpolation functor. Note that F is
exact if we can take C=1.

The simplest interpolation functors are the functors 4 and X. These functors
are exact interpolation functors on any admissible sub-category € of the category
A of normed vector spaces.
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2.5. The Aronszajn-Gagliardo Theorem

Let A be an interpolation space with respect to A. 1t is natural to ask if there is an
interpolation functor F, such that F(A)=A4. This question is considered in the
following theorem.

2.5.1. Theorem (The Aronszajn-Gagliardo theorem). Consider the category #
of all Banach spaces. Let A be an interpolation space with respect to the couple A.
Then there exists an exact interpolation functor Fy on # such that F(A)=A.

Note that F,(A)=A means that the spaces F,(4) and A have the same
elements and equivalent norms. Thus it follows from the theorem that any inter-
polation space can be renormed in such a way that the renormed space becomes an
exact interpolation space.

Proof: Let X =(X,,X,) be a given couple in #,. If T:A—X we write
1Tl zx=max (I T| 4x0 I Tlla, x,)-

Then X =F,(X) consists of those xeX(X), which admit a representation
x=y;T,a; (convergence in X(X)),

where T;:A-X, aq;e A. Put
Nyx) =Y 1Tl 7zl 4

The norm in X is the infimum of Ny(x) over all admissible representations of x.

First we prove that X is an intermediate space with respect to X. In order to

prove that A(X)c X welet p bea bounded linear functional on 2 (A) such that
¢(a;)=1 for some fixed a,eA. Let xeA(X) be fixed and put T, a=¢(a)x. Then

1Ty allx,=le@lx]x, <Cllalgalxlx, -
Since A;<=Z(A4) we conclude that T;: A—X and
1T 2.2 < Cllxlag)-
Put T;=0 and 4;=0 if j>1. Since T,a,=x we then have x=};Ta; and
Ixle <2 Tl az lasll e < Clixlag llagla-

This implies A(X)c=X. The inclusion X< X(X) follows easily from the fact that
AcX2(A). Forif x= Zj T;a; is an admissible representation of xeX, then

Ixllsr < X1 Tl g lallsa < C X Tl gz lajly -
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Thus
I x“zo?) < CNy(x)

which implies X < Z(X).

We now turn to the completeness of X, using Lemma 2.2.1 repeatedly. Suppose
that 3’ , |x™|y converges. Then ), [x]y, converges too, since X <X (X).
Thus x —Z ®  with convergence in X(X), X(X) being complete. Let
xV=3TMd» be admissible representations such that Y | Tz z &) 4<
IxVx+27", v=0,1,2,.... Then x=3 % TMa” is in X because
Y2 il Tz 2la”] 4<co. Finally, with these representations, we have

= Ty < Eime s Lo 1Tzl

< Z?=n+1(”x(v)“x +27Y)-0 (n—>o0).

Thus x=) x with convergence in X, and X is complete.
Next we prove that F, is an exact interpolation functor. Assume that S: X - .
If X=(X,,X,) and Y=(Y,,Y,) we write

Mj=”S”Xj9Yj’ j=0,1.
Put X =F(X) and Y=F(Y) and suppose that xe X. If x=);T,a, is an admis-

sible representation of x, then Sx=);STq; is an admissible representation of
Sx. In fact,

IS T2,y < max (Mo, M )| T .5
and therefore

YIS Tl z llayll 4 < max (Mo, M) Y | Till 1.2 a1l 4-
This proves that |Sx|,<max(MyM,)|xly,1.e, that F, is an exact inter-
polation functor.

It remains to prove that F O(A) A. If aeF,(A) has the admissible represen-
tation a=);T,a; where T;: A—»A then

[ Tia;l 4 <ClTill 5, zlla;l4-

This follows from the fact that 4 is an interpolation space with respect to A4
and that A is uniform according to Theorem 2.4.2. Thus

lal < T i Talla < CY I Tilizalla;l 4= CNya),

which gives F,(4)= A. The converse inclusion is immediate. For a given aeA,
we write a=) ;T.a;, where T,=0 and a;=0 for j>1 and T;=1, a;=a Then
lallpoa <21 Tllzallala=lall,. O
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Let us look back at the proof. Where did we use that 4 was an interpolation
space? Obviously only when proving that Fy(4)< A. Thus we conclude that if A
is any intermediate space with respect to A, then there exists an exact inter-
polation space B with respect to 4, such that AcB.

Of greater interest is the following corollary of the Aronszajn-Gagliardo
theorem. It states that the functor F, is minimal among all functors G such that
G(A)=A.

2.5.2. Corollary. Consider the category #. Let A be an interpolation space with
respect to A and let F, be the interpolation functor constructed in the proof of Theo-
rem 2.51. Then Fy(X)<G(X) for all interpolation functors G such that G(A)=A.

Proof: If x=Y,Ta; is an admissible representation for xeX =Fy(X), then
T;:A-X. Put Y=G(X). Since 4 and Y are uniform interpolation spaces with
respect to A and X it follows that

1Taily<ClTlzzllall 4>
where

[ T;)l 2,5 =max (| Tjl| 4, x0 | Till a1 x ) -
Thus

HXHY<CZ,' “T,HZ)‘( Ila,-!IA-

By the definition of X it follows that X < ¥, i.e., Fo(X)=G(X). 1

2.6. A Necessary Condition for Interpolation

In this section we consider the category ¥ =.4" of all normed linear spaces.
%, is the category of all compatible couples.
With >0 fixed, put

K(taa) = K(t9a7;‘i) = infa=ao+a1 (” aO ” Ao +1 ” al “ Al)’ ae 2(/&) ’
J(t,a)=J(t,a;A) = max([a| 4ptlall ), acd(4).
These functionals will be used frequently in the sequel. It is easy to see that K(t,a)
and J(t,a), t>0, are equivalent norms on X (4) and A(A) respectively. (Cf.
Chapter 3.)

2.6.1. Theorem. Let A and B be uniform interpolation spaces with respect to the
couples A and B. Then

J(t,b)<K(t,a) forsome t, acA,
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implies

beB, |blp<Cllal,.
If A and B are exact interpolation spaces the conclusion holds with C=1.

The theorem gives a condition on the norms of the interpolation spaces 4 and
B in terms of the norms of the “endpoint” spaces in 4 and B.

Proof: Let a,b and t be as in the assumption. Consider the linear operator
Tx= f(x)-b, where f is a linear functional on X(4) with f(a)=1 and |f(x)|<
K{t, x)/K(t,a). The existence of f follows from the Hahn-Banach theorem. If
xe A; we have

K(t,x)
K(t,a)

ETx] <1 f ()l bl < £Ibl < K(t,x)<t|x]l,

i=0,1. Hence, since 4 and B are uniform interpolation spaces, ||Tx|z<C| x| ,,
xeA. Putting x=a we have ||b|z<Cla|, since Ta=b. Finally, if A and B
are exact, obviously C=1. The proof is complete. 0

2.7. A Duality Theorem

Considering the category 4 of all Banach spaces we have the following.

2.7.1. Theorem. Suppose that A(A) is dense in both A, and A,. Then A(A)Y =Z(A")
and Z(A)Y=A4(A"), where A’ =(Ap,Ay) and A’ denotes the dual of A. More
precisely

@'l 5@y =SUPacsca) I!TZI—L:%]
and
”a,HA(/_l') = SUPaeE<Z) IﬁzT’:;l

where (- > denotes the duality between A(A) and A(A).
Proof: We prove only the first formula. The proof of the second one is quite
similar.

First, let a'eX(A’) and a'=a,+a,,d,eA,. Then

[<a',a)| < [Kag,ay|+ Kay,a) |< (lap g+ lay | i) max (lall us lall 4,), € A(A).
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Consequently, a’'eA(4) and (@] yay <la'lz@)-
Conversely, let led(A4), i.e.,

@) < | agay lall sy, @€ A(A).
Then the linear form
A(ag,ay)—1 ((ag+a)/2)
on E={(ag,a,)e Ay ®A,:a,=a,} is continuous in the norm max(|a,ll 4, a;ll 4,)

on A,@A,, E is a subspace of A,® A4,. Then, by the Hahn-Banach theorem,
there is (ag,a))e Ay @ A; such that

laoll ap + a3 ILay < 111 acay
and

Mag,a,)=<ap,a0) +<a1,a,), (a,a,)€E.
Thus, taking a,=a, =a, we obtain

(@)= {a},a) +{a,,a) = {ay+a,a), acA(A).

By the density assumption, a, and @ are determined by their values on A(A4).
Putting I=a,+aj, [ 5, <1l 43 follows.
This completes the proof of the first formula. [

2.8. Exercises

1. Prove Lemma 2.3.1 in detail. In particular, use the Hausdorff property of U«
to show that A,n A, is complete if 4, and A, are complete.

2. Use Lemma 2.2.1 to prove that the space of all bounded linear operators
from a normed linear space to a Banach space is complete.

3. Let X;, i=0,1, and X be Banach spaces, X closed in X and X;cX, i=0,1.
Show that the following two conditions are equivalent:

() Xo+X, isclosedin X;

(i) [xlxosx, <Clxly for xeXo+X,.

4. (Aronszajn and Gagliardo [1])- Let A be an interpolation space of exponent 0
with respect to A. Prove that there is a minimal interpolation functor Fy, which is
exact and of exponent 8, such that F,(A)=A.

Hint: Use the functional Ny(x)= Y I T 45 % I Tl%, x, lal «.
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5. (Aronszajn-Gagliardo [1]). Consider the category # of all Banach spaces and
let A be an interpolation space with respect to the couple A. Prove that there
exists a maximal exact interpolation functor F; on %, such that F (4)=A.

Hint: Define X =F,(A) as the space of all xeZX(X) such that Txe4 for all
T:X—A. The norm on X is M(x)=sup {|| Tx|| ;:max (| Tfy, 4, I Tllx,.4,) <1}

6. (Gustavsson [1]). Let 4;, i=0,1, be seminormed linear spaces, i.e., the norms
are now only semidefinite. Moreover, let 4, i=0,1, U being a linear space.
Put A={A4,4,} and

N(Z)z {a€A0+A1 linfa=ao+a1(“a0“Ao+ “a1”,4‘)=0} ’

the null space of the couple 4. Show that N(A) is a closed linear subspace of
Ao+ A, equipped with the seminorm in the definition of N(4). If A4,nA4, is
complete in the seminorm max(|*| ,[*l,) and aeN(4) then prove that
there exist a;e A; with a5+a;=a and |4 ,,=0,i=0,1.

7. (Gagliardo [2]). Let 4 and B be (semi-)normed linear spaces and Ac<B.
The Gagliardo completion of A4 relative to B, written A%< is the set of all beB
for which there exists a sequence (a,) bounded in 4 and with the limit b in B.

(a) Show that A%< with
bl 45e = inf(a,,) sup, la,ll 4

is a (semi-)normed linear space, and that ||| 5. <{b| , for beA.
(b) Show that A% is an exact interpolation space with respect to (4, B).

(c) Show that if 4 and B are Banach spaces, such that A4 is dense in B and 4
is reflexive, then A%<=A4.

8. Let 4 and B be as in the previous exercise. The Cauchy completion of A relative
to B, written A, is the set of all be B for which there exists a sequence (a,), Cauchy
in A and with the limit b in B. Prove that A° is a semi-normed linear space with

[|B1f 4 =inf(a,,) sup, la,ll 4,

and that ||b|| . <|b], for beA.

(As the notation indicates, A° may be constructed without reference to a set B.
Cf. Dunford-Schwartz [1].)

9. Show that A°c A% with A° and A®* as in Exercise 7 and Exercise §.
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10. Prove the following dual corollaries to Theorem 2.6.1:

{a) If a and b satisfy

Ji,b)y<Jt,ay all t>0
{K(t,a)=min(!laﬂo,tHaH1) all >0

then (1) implies |[bllz<|lal -
(b} If a and b satisfy

K@t,b)y<K(t,ay all t>0
K(t,b)y=min({|b]|4,tibll;) all >0

then (1) implies |b]l5<flall,.

11. (Weak reiteration theorem). Let X=(X,, X,) and A=(4,, 4,) be given
couples.

_ (a) Suppose that X, and X, are (exact) interpolation spaces with respect to
4 and let X be an (exact) interpolation space with respect to X. Then X is an
(exact) interpolation space with respect to 4.

(b) Suppose that X, and X, are (exact) interpolation spaces of exponents 8,
and 6, respectively with respect to A and that X is an (exact) interpolation space of
exponent # with respect to X. Then X is an (exact) interpolation space of exponent
6 with respect to A provided that

f=(1-nb,+nb,.

12. Show that if A, is contained in 4, as a set, and A4 is a compatible couple in
A, then

lal Ao ™ Ha”A(Z) (acAy).

13. (Aronszajn-Gagliardo [1]). Let 4, and 4, be normed linear subspaces of a
linear space A. Consider their direct sum 4, 4, and the set Z< 4, P 4,,

Z={(ag,a,)e A, @ A, lay+a, =0}.

Let flagll 4, +lla;ll 4, be the norm on A,@® A,. Show that (4,® 4,)/Z, with the
quotient norm, is isometrically isomorphic to A,+ A, and that the same is true for
Z, with norm max(|{a,ll 4, lfall 4,), and 4, A4,. (The definitions of 4, + A4, and
Ay,n A, and their respective norms are found in Section 2.4.)

14. (Girardeau [1]). (a) Let A4; (i=0,1) be locally convex Hausdorff topological
vector spaces, such that A is subspace of 4,. Assume that there is an antilinear sur-
jective mapping M: A4 — A, satisfying

{Ma,a)=20 (acA)).



36 2. General Properties of Interpolation Spaces
Show that M defines a scalar product
(c,d)=<{Ma,b>,

where c=Ma and d=Mb, and that if A, is quasicomplete then the completion
of A, in the scalar product topology is a Hilbert space A with

AycAcA,.

(b) Let 4; and B, be as in (a), and assume that A, and B, are dense in 4 and B
respectively. Consider a continuous and linear mapping T: A, —»B,, with T(4,)
contained in B,. Show that

TeL(A,B)
iff there existsa A>0, such that
2 o(ATIT*TY (@) (acA,)

converges weakly in the completion of 4,.

Hint: ((T*TY'a,b>>0 if Mb=a.

29. Notes and Comment

The origin of the study of interpolation spaces was, as we noted in Chapter 1,
interpolation with respect to couples of L -spaces. Interpolation with respect to
more general couples, i.e., Hilbert couples, Banach couples, etc, seems to have
been introduced in the late fifties. Several interpolation methods have been inven-
ted. A few of the relevant, but not necessarily the first, references are: Lions [1],
“espaces de trace”; Krein [1], “normal scales of spaces”; Gagliardo [2], “unified
structure”; Lions and Peetre [1], “classe d’espaces d’interpolation”, Calderén [2],
“the complex method”. We shall discuss their relation in Chapters 3—5. Two of
these interpolation methods will be treated in some detail: the real method, which
is essentially that of Lions and Peetre [1], and the complex method. This is done
in the following two chapters.

For interpolation results pertaining to couples of locally convex topological
spaces, see e.g. Girardeau [1] (cf. Exercise 14) and Deutsch [1]. Interpolation
with respect to couples of quasinormed Abelian groups has been treated by Peetre
and Sparr [1] (see Section 3.10 and Chapter 7).

Non-linear interpolation has been considered, e.g., by Gagliardo [1], Peetre
[17], Tartar [1], Brézis [1]. For additional references, see Peetre [17]. (Cf. also
Gustavsson [2].) “Non-linear” indicates that non-linear operators are admitted:
e.g., Lipschitz and Holder operators. Cf. Section 3.13. There are applications to
partial differential equations: Tartar [1], Brézis [1]. See also Section 7.6.
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29.1-2. The functorial approach to interpolation merely provides a convenient
framework for the underlying primitive ideas, and makes the exposition more
stringent.

29.3. Introducing couples A=(A4,A,) we have assumed the existence of a
Hausdorff topological vector space U, such that 4, (i=0,1). This assumption
is made for convenience only. Cf. Aronszajn and Gagliardo [1], where A, @ 4,
plays the role of U, but, anyway, they have to make additional assumptions in
order to obtain unique limits. This property, and the possibility of forming
A, +A,, are the essential consequences of the requirements A, (i=0,1),
A Hausdorff. (Cf. Exercise 1 and 13.)

Peetre [ 20] has coined the notion weak couple for the situation when Ay and A4,
only have continuous and linear injections into a Hausdorff topological vector
space U (cf. also Gagliardo [1]). £(4) may then still be viewed as a subspace of U:
the linear hull of iy(A,) and i,(A4,), but A4(A4) is the subspace of 4,@ 4, of those
(ag,a,) for which iy(a,)=i,(a,).

2.9.4—5. Concerning the relation between the concepts “interpolation space with
respect to A” and “interpolation spaces with respect to 4 and B”, see Aronszajn
and Gagliardo [1]. They show, however, that if A’ is maximal and B’ is minimal
among all spaces satisfying (3), then A’ is an interpolation space with respect to 4
and likewise for B’ and B.

The definition of “interpolation space” implies the uniform interpolation
condition (5) if the spaces labelled by the letter B are Banach spaces (i.e., the
spaces labelled by the letter A need not be complete in Theorem 2.4.2). On the
other hand, we do not know of any interpolation space that is not uniform.
This question is connected with the Aronszajn-Gagliardo theorem, since Theorem
2.4.2 is used in its proof. Thus there is a question whether the Aronszajn-Gagliardo
theorem holds also in some category larger than %, say 4. Obviously, our proof
breaks down, because we invoke the Banach theorem, a consequence of Baire’s
category theorem, and in these theorems completeness is essential.

2.9.6. The necessary condition is valid also in the semi-normed case (cf. Exercise
6). This necessary condition, adapted to a specific couple and more or less disguised,
has been used by several authors to determine whether or not a certain space may
be an interpolation space with respect to a given couple. (Cf. Bergh [1] and 5.8.)

2.9.7. The duality theorem is taken over from Lions and Peetre [1].

2.9.8. Using the Gagliardo completion, Exercise 7, Aronszajn and Gagliardo [1]
have shown that, in the category # and in general, A, and A; are not inter-
polation spaces with respect to the (compatible) couple (4(A), Z(A4)). This fact
should be viewed in contrast to the statement that A(4) and X(A4) always are inter-
polation spaces with respect to the couple 4 (see Section 2.4 and also compare
Section 5.8).



Chapter 3

The Real Interpolation Method

In this chapter we introduce the first of the two explicit interpolation functors
which we employ for the applications in the last three chapters. Our presentation
of this method/functor—the real interpolation method—follows esséntially
Peetre [10]. In general, we work with normed linear spaces. However, we have
tried to facilitate the extension of the method to comprise also the case of quasi-
normed. linear spaces, and even quasi-normed Abelian groups. Consequently,
these latter cases are treated with a minimum of new proofs in Sections 3.10 and
3.11. In the first nine sections we consider the category 4", of compatible couples
of spaces in the category 4" of normed linear spaces unless otherwise stated.

3.1. The K-Method

In this section we consider the category 4 of all normed vector spaces. We
shall construct a family of interpolation functors K, , on the category 4.
We know that X is an interpolation functor on .4". The norm on X(4) is

infa=ao+al (laoll 4+ lay ”Al),

if 4=(A4,,4,). Now we can replace the norm on 4, by an equivalent one. We
may, for instance, replace the norm |la, |, by t-|a,li,,, wheretisa fixed positive
number. This means that

K(ta)=K(t,a;A)=inf,_ .40, (120 ] 4+l a1l 4,)

is an equivalent norm on X(A4) for every fixed t>0. More precisely, we have
the following lemma.

Lemma 3.1.1. For any acZX(A),K(t,a) is a positive, increasing and concave
function of t. In particular

(1) K(t,a)< max(1,t/s)K(s,a). [
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The lemma is a direct consequence of the definition, and is left as an exercise
for the reader. Moreover, (1) implies at once that K(t,a) is an equivalent norm on
X(A) for each fixed positive t.

The functional t—K(t,a), ae Z(A), has a geometrical interpretation in the
Gagliardo diagram. Consider the set I'(a),

I(@)={x=(x,, x;)eR*|Ia,+a,=a,a,€4,,i=0,1; “ai“Ai <Xf

It is immediately verified that I'(a) is a convex subset of R2, cf. Figure 3. In
addition

2 K(t, ay=inf,_p, (xo+tx)=1nf, ;e (X0 +tX,),
i.e. K{t,a) is the x,-intercept of the tangent to 0I'(a) (boundary of I'(a)), with

slope —t™ 1. This follows from the fact that K(t, a) is a positive, increasing and
concave function and thus also continuous.

\
(0,t"1K(t,a))

N ar{a)

{K{t,a},0} Xo
\

Fig. 3

For every t>0, K(t,a) is a norm on the interpolation space X(4). We now
define a new interpolation space by means of a kind of superposition, which is
obtained by imposing conditions on the function t—K(t,a). Let &,  be the
functional defined by

3) Py (0(1)=(J5 (" pe)?dt/)*?,  1<q< o0,
where ¢ is a non-negative function. Then we consider the condition

4 D, (K(t,a))< 0.
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By Lemma 3.1.1 we see that this condition is meaningful in the cases

0<8<1,1<q<0 and 0<0<1, g=o. For these values of 0 and q, we let
Ag g.x=Kg (A) denote the space of all acX(A), such that (4) holds. We put

®) lallg.q;x = Po o(K(2, a)) .
In the following theorem it is understood that if T: A— B then Ky (T)=T.

3.1.2. Theorem. K, , is an exact interpolation functor of exponent 0 on the category
A". Moreover, we have

(6) K(s, a3 A)<yy,45° | allg,gx-

Proof: Since K(t,a; A) is a norm on X(A4), and since @, has all the three pro-

perties of a norm, it is easy to see that K, ,(4) is a normed vector space.
In order to prove (6), we use Formula (1) of Lemma 3.1.1 which can be written
in the form
min(1, ¢/s) K(s, a) < K{t, a).
Applying @, , to this inequality we get
¢9,q (mln(is t/S)) K(S, a) < ”a”(),q;K'

Now we note that, with s>0,

By o(0(t/5) = ([ (¢~ plt/s)) /1)1
=s7°(JS(t/s) P plt/s)\ d(t/s)/(t/s)'14,

Le.
(7 Dy, (0(t/5) =5 Dy (0(1)).
Thus
®, ,(min(1, t/s))= s“’dig,q(min(i, ).
Since @, ,(min(1, 1)) =1/(g'4(6(1 - 6))"/9), we obtain (6).
Using (6) with s=1, we see that K, (A4)<=Z(4). The inclusion A(4)< K, (A)
is obvious, since
K(t, a)<min(1, 2) ]l 5.2,

In fact, this inequality gives

lallo,q;x < Po,g(min(1, 1)) [al 4z)-
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It remains to prove that K, , is an exact interpolation functor of exponent 6.
Thus, suppose that T: A—B, where 4=(4,,4,) and B=(B,, B,). Put

Mj: ”T”Aj,BJ-, j=0, 1.

Then
K(t, Ta; By<inf,_ 4 1o, (| Taol 5, + | Ty I| 5,)
Sinfy 40, (Mo llaol 4o +tMllagll4,)-
Thus
8) K(t, Ta; B)YS M, K(M,t/M, a; A).

But, using (7) with s=M,/M,, we obtain
I Ta“l(e,,,(i) <M~ Mj Ha“Ke,q(I)-

This proves that K, , is an exact interpolation functor of exponent 6. [
Remark: The interpolation property holds for all operators T:X(A)—Z(B),
such that (8) holds. In particular, the interpolation property holds for all operators
T such that T(a+a,)=b,+b, where [bjllz,<M;la;l,, j=0,1.

There are several useful variants of the K, -functor. In this section we shall
mention only the discrete K, ,-method. We shall replace the continuous variable ¢
by a discrete variable v. The connection between t and v is t=2". This discreti-

zation will turn out to be a most useful technical device.
Let us denote by 2% the space of all sequences {(a,)® ,, such that

@)l 20.0= (X% 2l )9) 1 < 00

3.1.3. Lemma. If acZ(A) we put a,=K(2",a; A). Then aeKoq(A) if and only if
(a,)®, belongs to 4% Moreover, we have

27log2 o[l 10,4 < [1allg g,k <2-1082 |0t 6.0-

Proof: Clearly, we have
lallgqx = (2% o J527 (¢ K(t, @)Y dt/t)!/2.

Now Lemma 3.1.1 implies that

K(2", a)<K(t,a)<2K(2",a), 2'<t<2°*L,
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Consequently,
270270 <t7OK(t,a)<2-27%a, 2V 2Y Y,

and thus the inequalities of the lemma follow. [

32. The J-Method

There is a definition of the J-method which is similar to the description of the
K-method in the previous section. Instead of starting with the interpolation
method X we start with the functor 4 and define the J-method by means of a kind
of superposition.

For any fixed t>0 we put

J(t,a)=J(t,a; A)=max(|la] 4, tlal ,,),

for aeA(4). Clearly J(t,a) is an equivalent norm on A(4) for a given t>0.
More precisely we have the following lemma, the proof of which is immediate,
and is left as an exercise for the reader.

3.2.1. Lemma. For any acA(A), J(t,a) is a positive, increasing and convex
function of t, such that

(1) J(t, a)<max(1, t/s)J(s, a),
(2) K(t,a)<min(1, t/s)J(s,a). [

The space Ay ,;=J, (4) is now defined as follows. The elements a in Jo (A)
are those in Z(A) which can be represented by

(3 a=[2ut)dt/t (convergencein X(A)),

where u(t) is measurable with values in A(A) and

4) @y ,(J(t, u(t))) < co.

Here we consider the cases 0< <1, 1<q<o0 and 0<0<1, g=1. We put
®) llallg g,y =1nf, Py 4 (J(t, u(1))),

where the infimum is taken over all u such that (3) and (4) hold.
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3.2.2. Theorem. Let J,, be defined by (3), (4) and (5). Then J, , is an exact inter-
polation functor of exponent 0 on the category A . Moreover, we have

(6) “aHOqJ\CS 0 (Saa;“-i)’ GEA(Z)

where C is independent of 6 and q.

Proof Obviously, |ally,, is a norm. Assume that T:A;—B; with norm
»j=0,1. For aeA,,;, we have, since T: X(A)—X(B) is bounded linear, that
Tu(t) is measurable,

Ta= T(j0 (t)dt/t) = [§ Tu(r)dt/t  (convergence in X(B)).
Thus, with this u,

J(t, T(t)) = max (|| Tu(t)]l g, ¢ || Tult)]| g,
< Mo max ([u(d)ll 4, tM /M, llu/t)] 4,)
=M,y J(tM,/M,, u(t)),

and we obtain, by the properties of @,
@y (I8, Tu(t))) < Mo ™° MY B4, (J(t, u(0))).

Taking the infimum of the right hand side, we infer that J,, is an exact inter-
polation functor. Finally, noting that ae A(A) has the representation

a=(log2)™" [Zad/t=(log2)"" |5 a2 dt/t,

(6) follows at once from (1). O

There is a discrete representation of the space J, q(A) which is analogous
to the discrete representation of the space K, q(A)

3.2.3. Lemma. aeJ,(A) iff there exist u,e A(A), — 0 <v<o0, with
7 a =Zvuv (convergence in Z(A)),
and such that (J(2", u,)) e A%%. Moreover

lallg,qs ~infy, H(T 2% u )l 0.4

where the infimum is extended over all sequences (u,) satisfying (7).
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Proof: Suppose that aeJy, (A). Then we have a representation a= [ u(t)dt/t.
Choose u —jzv “u(t)deft. Clearly (7) holds with these u,. In addition, by (1), we
obtain

1@ u D fo.a =2, (277°J(2", u,)?
SELCIVT (0 J(e, u(e)y de/t=C{ @y (J(t, u(t)}*,

and thus, taking the infimum, we conclude that
infy, (T2 u ) 0.a < Cllallg g,

Conversely, assume that a =Zvuv and  (J(2%,u,)),e4™.  Choose
u(t)=u,/log2,2"<t<2'*'. Then we obtain

a=Y,u,=Y, {307 (u,/log2)dt/t = {Fu(t)dt/t .
Also, by (1), we have
{@ogJ(t, w(t)}* = |3 (™I (e u(e))) dy/t

=3 300, W)y
<ZVC(2 Y JQ2%, )

Again, taking infimum, we obtain

lallgy.s <Cinf, ) (2% u )l s0.a . T

3.3. The Equivalence Theorem

In this section we shall prove that the K- and J-methods of the preceding two
sections are equivalent. More precisely, we shall prove the following result.

33.1. Theorem (The equivalence theorem). If 0<0<1 and 1<g<co then
Joo(A) =K, (A) with equivalence of norms.

Proof: Take first aeJeyq(,:l) and a=[gu(t)dt/t. Then, by Lemma 3.2.1, it follows
that

K(t,a) < {3 K(t, u(s))ds/s < [ min(4, t/s) J(s,u(s)) ds/s
= [@min(1, s~ 1) J(ts, u(ts))ds/s.

Applying &, , and changing variable, we obtain

lall,gx < Pog(J(t, u(®) [§ s*min(1, s™ 1) ds/s = C @y ((J(, u(t))).
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Thus [allg,x<Clallg,, follows by taking the infimum.
For the converse inequality, we need a lemma.

3.3.2. Lemma (The fundamental lemma of interpolation theory). Assume that
min(1, 1/t)K(t,a)-»0 as t—-0 oras t—co.

Then, for any ¢>0, there is a representation
a=)Y,u, (convergencein X(4))

of a, such that
J2%u,)<(y+¢) K(2", a).

Here y is a universal constant <3.

Before we prove the fundamental lemma, we complete the proof of Theorem
3.3.1. By Theorem 3.1.3, we have

K(t9 a) < C0,qt8 “aHG,q;K
for any given aeKe,q(,Z). Thus it follows that min(1,1/t)K(t, a)—0 as t—0 or
t— 0. Consequently, the fundamental lemma implies the existence of a represen-

tation a=) ,u,, such that

J(2%u)<(y+eK(2% a).
Thus
[(J27, u))]l 20,0 <(y +2) [(K(2", @)l 30,4 -

By Lemma 3.1.3 and 3.2.2, we see
lalipgs <Hy+e)llalgg -
This completes the proof of Theorem 3.3.1. [

Proof of the fundamental lemma: For every integer v, there is a decomposition
a=a, ,+a, ,, such that for given £¢>0

6y lag ol 4o +2" [[a1,,] 4, <1 +&)K(2%, a).
Thus it follows that
fao,l 4o—0 as v——oo,

la; 0 4,—0 as vo+oo.
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Write

Uy=0g y—0o,y—1 =y y—1 ~ g,y
Then u,€ A(4) and

a—Y M u,=a—ag y+ao _n_1 =0 _y_1Fa; -
Therefore, we have

K(t,a=Y¥yu)<llag, -n-1llagt+lay ael 4,
Letting N—o0 and M—co, we see that

a=Y% u, (convergencein Z(A)).
By (1), we also see that

J(2', uv)gmax(”aO,v“Ao_*_ “ao,v— 1l 4o 2v(”a1,v~ 1 ”A, + Ha1,v“,4,))

<3(1+8)K(2% a).
This proves the lemma. [

In the sequel we shall speak of the real interpolation method. Then we shall
mean either the K, - or the J, -method. In view of the equivalence theorem,
these two methods give the same result if 0<f#<1. Accordingly, we shall write
A, instead of A, ¢ or A,,, if 0<6<1. If =0 or 1 and g=co, we shall let

Ay, denote the space A4, ,.x. The norm on ‘:10,q we denote by |-, if 0<0<1
orif 0<6<1 and g=c0.

34. Simple Properties of A,

In this section we shall prove some basic and simple properties of ZM. We
collect these results in two theorems, the first of which deals with inclusions
between various A4, -spaces.

3.4.1. Theorem. Let A=(A,, A,) be a given couple. Then we have
(@) (Ao, Ay)g=(4y, Ao)i—oy  (with equal norms);
(b) Ag =4y, i q<r;
(©) ApygoNAp, 0= Apg if 0o<0<8y;
(d) AycAy=>A, <Ay, if 0,<0;;
(e) Ay=4, (equal norms) implies Ze,quO and ||a 4,=(q0(1—0)"]al,, .
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Proof: We have
K(t,a; Ag, A))=tK(t™ ', a; A,, Ay),
and &, (@(t) =P, _, (to(t™")). This gives (a).
In order to prove (b), we first note that Theorem 3.1.2 implies (b) when r= 0.
If g<r<w we obtain, again by Theorem 3.1.2,

lallg, =(§& (" K(t, a)(t™°K(t, a)y ~?dt/t)' " < C |lalg llalls, ",

which gives (b).
For the proof of (c), we note that

By (@) <ot~ () de/0) 0+ ([ (2~ o)) dt/r) 2.
Now it is easy to see that the first integral can be estimated by @, , (¢), and the
second one by &, . (¢). This proves (c).
If A=A, we have |a| ,<klal,,. Then K{t, a; ; A)= lal 4, if t>k. In fact,
if a=ay+a, we have
lall 4o < llaollay+2/k llayllap < llaoll 4o+ llaylly,
which proves ||a| ,, <K(t, a; A). It follows that
lallg g~ (5~ K(t, a; A)\di/t)/2 +|a] ,,

This implies (d). Sinse (e) is immediate, the theorem follows. [

3.4.2. Theorem. Let A=(A,, A,) be a given couple.
(a) If Ay and A, are complete then so is A, a
(b) If gq< o then A(A) is dense in Ao
(c) The closure of A(A) in A(, w I8 the space A(, » of all a such that
t7°K(t,a; A)»0 as t—-0 or t—co.
(d) If A denotes the closure of A(A) in A; we have for q< oo,
(AOa A 1)0,q = (Ag’ A 1)8,q = (A07 A(l))(),q = (Ag, A(l))ﬂ,q .
Proof: In order to prove (a), we use Lemma 2.2.1. Assume that

Z ” |0q<cO

By Theorem 3.1.2, we have K(1,a;)<Clla,ly,. By Lemma 2.3.1, we know that
Ao+A,; is complete. Thus ) ;a; converges in A,+A4, to an element a. Since

¢9,q(K(t’ Zj> N aj)) < ¢9,q(Zj> N K(t3 aj)) S Zj> N ¢8,q(K(t’ aj))’
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it follows that aneyq and ) ;a; convergestoain A,,.
We now prove (b). Note that the assumption g< oo implies 0<6<1. Then
every acA,, may be represented by a=) ,u,, where u e4(4) and

Q272 u )< 0.
Then
I|a - Zlv] <N uv”(),q < (Z[v] > N(2_ vOJ(zv’ uv))q)l/q_)o’ N—oo.

This proves (b).

In (¢) we assume 0<O<1. If aeﬁg,w we obtain (from the fundamental
lemma of interpolation theory (Lemma 3.3.2)) a= Y, u, where u,eA(A) and
J(2%, u)<CK(2" a). Then

fa— Zivl <nvUyllg o <CSUP1v1>N2_vaK(2Ve a)»0, N-co.

Thus A(A) is dense in A9 . Conversely, if a is in the closure of A(4) in 4, ,, then
we can find be A(A4) such that [a—b], , <e. By Lemma 3.2.1 and Theorem 3.1.2,
we obtain K(t, a)< K(t,a—b)+ K(t, )< Ct®|a—b|4 , +min(1, 1) J(1, b). Thus

t7K(t,a)<Ce+t min(1,1)J(1,b).

It follows that ae A .
The last parts (d) and (e) of the theorem are obvious. [

3.5. The Reiteration Theorem

According to the weak reiteration theorem (cf. 2.8.11), we know that if X, and X,
are interpolation spaces of exponents 6, and 6, with respect to 4, and if X is an
interpolation space of exponent y with respect to X =(X,, X,), then X is an
interpolation space of exponent 0=(1—n)0,+7n0, with respect to A. In this
section we shall prove that if X, and X, are constructed from the couple 4 by
means of the real interpolation method, and if X is constructed from X by means
of the real method then X can be constructed from A by means of the real method.
Thus there is stability for repeated use of the real interpolation method.

3.5.1. Definition. Let A be a given couple of normed vector spaces. Suppose that X
is an intermediate space with respect to A. Then we say that

(@) X isof class €x(0; A) if K(t,a; A)<Ct®|aly, aeX;

(b) X isof class €,(0; A) if |al|y<Ct %J(t,a; A), acA(A).
Here 0<0<1. We also say that X is of class €(0; A) if X is of class €,(8; A)
and of class €,(9; A).
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From Theorem 3.1.2 and 3.2.3, we see that Z‘,, q_is of class €(6; A) if 0<f<1.
If A=(A4y, A,) we have that 4, is of class %(0; A) and 4, is of class €(1; 4).
This follows at once from the definition of J(z, a; A) and from the inequality

K(t, a; D)< min(la] 4, tlal ).

It is sometimes convenient to write down the definition without explicit use of
K(t, a) and J(t, ). Indeed, it_is obvious that

(a) X is of class €(0; A) if and only if for any t>0 there exist a,e 4, and
a €Ay, such that a=a,+a, and |a,|,, <Ct’llaly and |la,ll,, <Ct* ' |ally.

We can also show that
(b) X is of class €,(0; A) if and only if we have

(1 lalix <Cllally, ®llal’,.
In fact, if X is of class %,(0; A) we have that
laly <Cmax(t~°|lal 4, t* ~°llal 4,),

for all t>0. Taking t=llal 4 /lall,,, we get (1). Conversely, if (1) holds we see
that

lalx <Ct™°llally; (¢lal )’ S Ct=0J(t, a; A).
Another useful formulation of the definition is given in the following theorem.

3.5.2. Theorem. Suppose that 0<6<1. Then
(a) X is of class €x(6, A) iff

MA)cX <4, .
(b) A Banach space X is of class €46, A) iff
Ap =X < Z(A).

In this theorem, we are, of course, only dealing with intermediate spaces (cf.
Definition 3.5.1).

Proof: By the definition of 4, ,, we have X <A, if and only if
sup,» ot Kz, a; )< Clallx.

This clearly proves (a). In order to prove (b), we assume that a= Y, u, in Z(4).
Then if X is a Banach space of class €,(0; A)

lally <Y 2o lluylly SCY2 5277002 u,; A),
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i.e.
Ag =X,
Conversely, if this inclusion holds we put
a if v=n,
u, = .
0 if v#n.
Then
lalx<Clalz,,<C27™J(2", a; 4),
which shows that X is of class ,(0; A). [

We are now ready to prove the reiteration theorem, which is one of the most

important general results in interpolation theory. Often the reiteration theorem is
called the stability theorem.
3.53. Theorem (The reiteration theorem). Let A=(A,, A,) and X=(X,, X,)
be two compatible couples of normed linear spaces, and assume that X, (i=0,1)
are complete and of class €(0;; A), where 0<0,<1 and 6,#8,.

Put

0=(1-n08,+n8, (O<n<i).
Then, for 1<g<w

X,,=A,, (equivalent norms).

In particular, if 0<0,<1 and fiohq', are complete then
(‘Zf?o,qo’ ’aex,q,)n,q= /Ie,q (equivalent norms).

Proof: Suppose that a=a,+a,eX,, with a,eX;. Since X, is of class €(6;; A),
we have

K(t,a; HSK(, ag; A)+ K(t, a3 A)SCE | ag x, + ay]x,)-
It follows that

K(t, a; A)<Ct*K(t =%, a; X).
Applying &, , we deduce that

@, (K(t,a; A) < C(Jg ™" K(t® =%, a; X))* dt/1)'/2.
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If we change the variable in the integral, writing s=t%"% and noting that
n=(8—06y)/(6,—0,), we obtain

B, (K(t, a3 A)SCP, (K(s, a; X)).

(On the right hand side &, , is acting on the variable s.) It follows that X na C/Io,q-
Next, we prove the reverse inclusion. Assume that ae 4, , and choose a rep-
resentation a= j(‘," ut)dt/t of ain Z(A). If aeX, , we have, as above,

lallg, = C [ @€~ K(t" =%, a; X)1du/t.
Using Lemma 3.2.1 and that X; is of class %(6,, A) we obtain

K (1% 7%, a; X) < [L1% K% %, u(s); X)ds/s
< [@ tPomin(1, (¢/5)" %) J(s %, u(s); X)ds/s

< C[§ min((t/s)%, (¢/5)°1) J (s, u(s); A)ds/s.
Changing the variable by putting s=ot and applying &,,, it follows that
lalx, , <C([§ 0’ min(c =%, 6~°)do/0) D, ,(J(s, u(s); A),

by Lemma 3.2.1. Since the integral is finite, the inclusion is established by taking
the infimum in view of the equivalence Theorem 3.3.1. [

In the case 6,=0, we have the following complement to the reiteration
theorem.

3.5.4. Theorem. Let A be a given couple of Banach spaces and put
X0=Ze,qo’ Xy =A_9,q1

where 0<0<1,1<¢g; <0 (i=0,1). Then

where

The proof of this theorem will be given in 5.2 (Theorem 5.2.4).
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36. A Formula for the K-Functional

By the reiteration theorem, we have X, =4,, if X=(4,,,,4,,,) This
suggests the possibility of a formula connecting the functional K(t,a; A) with
K(t, a; X). Such a formula was given by Holmstedt [1].

3.6.1. Theorem. Let A be a given couple of normed spaces and put
XO:‘ZGO.%’ Xl =‘z{9x,q;’
where 0<0,<0,<1 and 1<q,<0,1<qg, <0. Put A=6,—-8,.
Then
K(t,a; X)~(f5" (s % K(s, a; A)*ds/s)' /4
+1(fFa(s™" K(s, a; A))* ds/s) .
Proof: We first prove “2”. Let a=a,+a,,a;€A4;,i=0,1. By Theorem 3.1.2
and Minkowski’s inequality it follows that
(§6" (s~ K(s, a; A)yods/s) " < (f5 " (s~ K(s, ap; A)°ds/s)"/
(557 Ks, ay: A)ods/s) e
<lalix,+C (6" (s* ay | x ) ds/s) 0 < C(llagl xo +t lay l1x,)-

Similarly, we obtain

t(fia(s ™% K(s, a5 AT ds/s) < Cllagllx, +hayly,)-

>

Adding the estimates and taking the infimum, the proof of * 2_’ is complete.
We turn to the proof of “<”. By the definition of K(t, a; 4), we may choose
ag(t)e A, and a(t)e A, such that a=a(t)+a(t) and

lao(Ol 4+ lla ()] 4, <2K(2, a; A).
With this choice we have

K(t, a; X) < [ ao(t"M)lx, +tla;, (D),
= (f& (s 7% K{(s, ao(t'/); A)) ds/s) /a0
+t(f (s~ K(s, a,(t'/%); )" ds/s)* @
< (o (s P K(s, ap(t'*); A))% ds/s)* 14
+([ (s ™0 K(s, ag(t'?); A))rods/s)
+t(f5 (s K(s, a, (t11%); A))2* ds/s)*/a
+t([&a(s™ " K(s, a, (t*1%); A)* ds/s)!2r.
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We estimate each term separately, using Lemma 3.1.1. For the first term we
obtain, by the triangle inequality,

(J6"(s™ R K(s, aole"/); A ds/s) 0 < (fo (s % K(s, a; A)ods/s)!I
+(J6" (7K s, ay (¢'1%); A)ods/s) e,
where the last term is bounded by
(fo"(s™ s lay(t" )4, ) ds/s) 140 < Ce™ VK (1112, a; Ayttt =00
<C(fo" (s~ K(s, a; ) ds/s)®;

the last inequality holds since s™!K(s, a) is decreasing.
To estimate the second term, we similarly infer that

(""W(S—HOK(S a(t IM) A))qods/s)”qo<(jxl/z —f “ao(tl/l)”Ao)qodS/S)”qo
<O g ()], <C %R K(, a3 )

<C(J5" (s % K(s, a; A)®ds/s)" 2.

The third and fourth terms are treated analogously. Summing the four estimates,
weget“<”. 10

The following corollary is easily proved by an adaptation of the above proof;
we leave this as an exercise.

3.6.2. Corollary. Let A be a given couple of normed spaces.
a) Put X =(A,,A4,4)4=0. Then

K(t,a; X)~t([2a(s ™% K(s, a; A)* ds/s)"/4".
b) Put X =(A,,,,A,), A=1—0,. Then

K(t, a; X) (j."/"(s_ooK(S,a;/I))qods/s)”qo. i

3.7. The Duality Theorem

We consider the category # of all Banach spaces. Here we determine the dual
A, , of the interpolation space 4,, when 1<g< 0. Recall that if 4(A) is dense in
A, and in A, we have

KKa, a)|

(1) K(t, a'; Ag, A1) =SUPe 43) T a Ay, A))
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and

@) I, a'; Ay, Ay)= ACELY

SupaEA(A) K(t 1 ,a; Ao, 1)
(1) and (2) are immediate consequences of Theorem 2.7.1.
These formulas suggest a simple relation between the space 4, o and its dual.

By Theorem 3.4.2, we know that A(A) is dense in 4, 4 if g<co. Since
A(/I)c}fo’qcz‘(/f)

(dense inclusions) we have, for g< o,
ATV (A,,) < Z(A).

We shall now prove the following result.

3.7.1. Theorem (The duality theorem). Let A be a couple of Banach spaces, such
that A(A) is dense in A, and A;. Assume that 1<qg<co and 0<0<1. Then

(Ag, A1) g =(Ag, AY)g,y  (equivalent norms),
where 1/q+1/q'=1.
Proof: We shall prove that
3) (Ao> A1)p,g;5 = (A1 A0)1-0,¢:x
(4) (Ao, Ar)p.g:k > (A1, Ao)i—0,95 -
Using (3) and (4), we get the result by the Equivalence Theorem 3.3.1 and Theorem
. %n order to prove (3), we take a'e(4,, A1)y, and apply Formula (1). Thus,
given £>0, we can find b,e4(A) such that b,#0 and, since a ‘e AA) =Z(A),
KQ27", a'; Ay, Ay)—emin(1,27")<(J(2%, b,; Ag, A,)) ™1 <d, b,).
Choose a sequence aeA®, and put
a,=Y,(J2% b,; Ay, A})) e, b
It follows that a,e(A4q, A1)gq.s>
(a,a,y>=2Y (K27 d; Ap, A})—emin(1,27)
and

d,a)< ol o fld ”(Ao,Al)g,‘q;J,
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since {|al 0.0 > [|a,llg 4. Noting that K(27%, a'; Ap, A})=27"K(2", a'; A}, Ap), we
obtain

Zv 27 av(K(zv’ al; All’ Az)) —'8min(1’ 2v))

é ”a”le.q. ”al ”(Ao,Al)'e,q;J.

Since 4% and A'~%? are dual via the duality )., 27", §, and ¢ is arbitrary, (3)
follows.
In order to prove (4), we take an element @’ in (4}, Ay),_g 4.5 We write @'
as asum
a=).,a,
with convergence in X(A')=A(A). Then it follows that
[Kd', ay|<Y, IKa, ap| <Y, J(277 al; Ap, ADK(2Y, a5 Ao, Ay).-
Since
JQ27d,; Ay, A))=27"J(2" a,, A}, Ap)
we conclude that
[Kd,a)|<Y, 277 J(2, a,; Ay, Ag)K(2', a; Ag, Ay)
which implies (4). 10

Remark: In the case g=o we see from the proof above that if Aj ., denotes
the closure of 4(4)in 4, . then

(Ap,o) = Ay

3.8. A Compactness Theorem

Using Theorem 3.4.1, we see that if 4, =4, then A, , =4, , when 6,<0,,
and A4,,=A,, when q<r. It follows that

(1) Ag g SAg g if 0,<0,.

If the inclusion A, < A4, is compact, then so is the inclusion (1). This will follow
from our next theorem.
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38.1. Theorem. Let B be any Banach space and (Ay, A;) a couple of Banach
spaces. Let T be a linear operator.

(1) Assume that

T:A,—»B  compactly,
T:4,-B,

and that E is of class 4,(0; A) for some 6 with 0<0<1. Then
T:E->B compactly.
(i1) Assume that

T:B—A, compactly,

T:B—A,,
and that E is of class €,(0; A) for some 0 with 0<8<1. Then

T:B—E compactly.
Proof: (i) Let (a,) be a bounded sequence in E and assume that |a,|lp<1.
Moreover let M; be the norm of T as a mapping from A4; to B. For a given
¢>0 we choose ¢ so that t°<er. Next we choose a4 4, and a, € 4,, such that
a,=a,,+a, and

lavoll ao+2lla,li4, <2K(t, a,; A).
By the assumption on E we have K(t,a,; A)<Ct®jja,||,. It follows that

I|av0”Ao+t ”‘%1”41 <2Ct? ”%HESZCIQ-

Thus {a,,)} is bounded in A,. Since T is a compact operator from 4, into B
we can find a subsequence (a,.,) of (a,,)? so that

ITa,.o—Ta,,ls<e,
if v/, 4’ are large enough. Since

I Ta,, —Ta, |g<M,la,, —a,, |, <2CM 1 '<2CM e,
we conclude that

[Ta, —Ta,|z<e(1+2CM,)

if v, 4 are large enough. This proves the compactness of the operator T: E—B.



3.9. An Extremal Property of the Real Method 57

(i) Let (b,)7 be a bounded sequence in B with [|b,[5<1, and let M; be the
norm of T as a mapping from B to 4;. Given an >0 we choose ¢ so that ¢t <et’.
Passing to a subsequence we may assume that

I Tb, —Tb, | <t

if v,y are large enough. Moreover we have
ITb, —~Tb, | 4, <2M,.

By the assumption on E we have that °{a|; < CJ(t, a; A). Thus we conclude that
| Tb, — Tb, |l < CJ(t, Tb, —Th,; A)< Cmax(1,2M,)t.

Hence we see that, with a new constant C,

|| Th, —Tb, | < Cet®,
Le.

ITb, —Tb, | <Cs.
Therefore T: B—E is compact. [

3.8.2. Corollary. If A, and A, are Banach spaces, A, < A, with compact inclusion
and 0<0,<0,<1 then A, , <A, ,, With compact inclusion.

Proof: We use part (i) of Theorem 3.8.1 on the identity mapping I By assumption,
I:4,— A4, compactly. It is trivial that I:A4,—A4, and thus I maps the space
Ay, 4, compactly to 4,. Thus

Ay, o <Ay (compact inclusion).
Using part (ii), we get in the same way

Ay, 4 (Ao, Ay, 4D ( compact inclusion).

190
By Theorem 3.5.3, we see that

(Ao, A =4, ., if 6,=10,.

91,411)'1,'10

Now the result follows. 0O

39. An Extremal Property of the Real Method

In this section we shall prove that the interpolation functors J,; and K ,, are
extremal in the sense explained in the following theorem.
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39.1. Theorem. Suppose that F is an interpolation functor of exponent 6. Then,
for any compatible Banach couple A=(A,, A;), we have

Jo (A = F(A).
Moreover, if A(A) is dense in A, and in A, then
F(A)= K, ,,(4).
Proof: Write A=F(A) and consider the mapping
Ti=Aa,
where a is a given element in 4 and AeC. Clearly T:C—A; with norm |al, .
Thus T:C—F(A) with norm less than a constant multiplied by [al} °]al%,.
It follows that
lall 4<Cllaly;®lal,,
or, equivalently,
1) lall ,<C27"J(2", a; A).
If a=Y u, in Z(A4) we therefore obtain

lal ,<CY,27°J(2" u,; A),

Jo (A) = A.

In order to prove the inclusion A=K, ,(4), we take a'e€4(4’) and put
Ta={d',a). Then T:4,-C with norm [d'],. (i=0,1). By the assumptions it
follows that T: A—C with norm

sup, 4 [Ka', ay/lall ;< C @l % < CPJ( ™", a's A).
Thus for all ae4 and all a’'eA(A’) we have
Ka,apl/J@~ ", d'; A)< CE|af ,.

Noting that X(A)=4(4") (Theorem 2.7.1) and taking the supremum over all
a'eA(A') on the left hand side, we conclude that

K(t,a; A)<Ct®|al,,

which means that 4=K, . (4). [
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3.10. Quasi-Normed Abelian Groups

The development of the real interpolation method did not depend heavily on all the
properties of a norm. It is easily seen that the homogeneity |Aafl=]|4]]a| is not
used. In several contexts the triangle inequality can be replaced by the more
general quasitriangle inequality |la+b|f <k(|all +[b]). This indicates the
possibility of extending the real interpolation method to more general categories
of spaces. Such an extension is motivated by certain applications, for instance
in order to get the full version of the Marcinkiewicz interpolation theorem. In this
and the next two sections, we shall extend the real interpolation method to quasi-
normed Abelian groups.

Let 4 be an Abelian group. The group operation is denoted by +, the inverse
of @ is —a and the neutral element is 0. A quasi-norm on A is a real-valued function
I+l ,» defined on A, such that

1) lal 40, and [la| =0 iff a=0,
) I =alls=lal
©) la+bl s<c(ial «+1b] ),

where ¢>1. The inequality (3) is called the c-triangle inequality and the function
|-l 4 @ c-norm.

The topology on A is defined in a natural way. A basis for the neighbourhoods
is the collection of all sets {b:|b—all ,<e} where ¢>0. When c=1 the topology
is defined by means of the metric d(a, b)=|b—all,. From the following lemma,
we see that 4 is metrizable also in the case ¢>1.

3.10.1. Lemma. Suppose that A is a c-normed Abelian group and let p be defined by
the equation (2¢)’=2. Then there is a 1-norm ||-|% on A, such that

) lali<lal%<Zall}.

It follows that d(a,by=\lb—a|% is a metric defining the topology in A.

Proof: We define ||lal|% by the formula

lal%=inf{37_, lai5: 37 a;=a,n>1}.

Taking n=1 and a,=a we see that |a|*<[la]|%. It is also easy to see that
lall% is a 1-norm. In fact, if a=a;+-+a, and b=b,+---+b, and c=a+b,
we put ¢;=q; if 1<j<n and ¢;=b;_, if n+1<j<n+m. Then c=c¢;+---+c¢,4p,
and

lelk < 25iTlesla=20=1 lalih+ X7, bl
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This implies the 1-triangle inequality

lellZ < llal%+1ibi%.
Obviously (2) is also satisfied.

It remains to prove |{all, <2 |la|%. (Note that this inequality also implies (1).)
First we note that

(5) [IZ;=1aj|Iﬁ<maX1 <j<n(2V la;|9), n=>1,
when v,,...,v, are any integers such that

6) v;20, 7,27«
In fact, (5) is true if n=1. Assume that (5) holds for 1,2, ..., n—1. Considering (6),
it is easily seen that there are two disjoint, nonempty sets I, and I,, such that
Iiul,={1,...,n} and

Zjel;z—Vj+1<19 Zjelzz_Vj+l<1'
By the induction hypothesis, it follows that

IIZ'eIkaj”ZSmaxjelkz\,j_l”aj“fq’ k=1’2

7

Consequently,
12351 allf <maxQ Y jer, 4,15, 21 jer, ;%) <max;_y (2% ]al%).

Thus we have proved (5).
Now suppose that a=a, + -+ +a, and put

M=37_lal%.
Choose v, ..., v, so that
27 laylg/M <27
Then (6) holds, and thus by (5) we have
lallf <max, ¢;<,(2%lla;[9) <2M.

Since [all , is the infimum of all M, we obtain ||a|5<2{al%. O

Since every quasi-normed Abelian group is metrizable, we have the notions of
Cauchy sequences and completeness. It is easy to verify the following analogue of
Lemma 2.2.1. (We leave the proof to the reader.)
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3.10.2. Lemma. Suppose that A is a c-normed Abelian group and let p be defined by
the equation 2cy?=2. If a:Z}’(’:Oa ; converges in A, then

lal 4 < CQ%o a5

Moreover, if A is complete then the finiteness of the right hand side implies the
convergence in A of the series Z}"’:oa P

We shall now give an example which will be used in the next section and in
Chapter 7.

Example: Suppose that 0<p <o and let u be any positive measure on a measure
space (U, ). Let L,=L(du) denote the space of y-measurable functions f, such
that

fulfipd/l<w-

In the limiting case p=co we get the space L =L_(du) of all bounded p-
measurable functions. Let us write

I, =(ulfPdwt? if O0<p<oo

and
IfllL,=esssup|f(x)].

Note that L, is a vector space, but for the moment we forget about multiplication
by scalars. Thus we consider L, as an Abelian group.

3.10.3. Lemma. The Abelian group L, is c-normed with c=1 if 1<p<co and
c=20"P"? if 0<p<1. Thus we have

(7 I f+gl., <max(L,20 =P (| f1I,, +lglly,)-
Moreover, L, is complete.
Proof: We consider only the case 0<p<1 since the case 1<p< o is covered by
the familiar theory of L -spaces. In order to prove (7), we shall use the well-known
inequalities (x>0, y=0)

(x+yP<xP+yP <27 P(x+yp if O<p<i.
From the left hand inequality we obtain

Lf+al, <Pulf1+1glP dwt < (I f1IE, + gl )P

From the right hand inequality we now obtain

If+gle, <2977 fl,, + lglL,)-
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In order to prove completeness, we shall use Lemma 2.2.1. If (2¢)?=2 and
¢=21"P" we have p=p. Therefore we assume that

Z}i1 I f31IE, < o0

Thus Zj‘;1| fiIP converges in L. Put f =Zj’;1 f;- Then f is measurable and

A
Thus |f|”belongsto L, i.e. feL,. Itfollowsthat f=3%, f; convergesinL,. [

Consider the case 0<p<1. In the notation of Lemma 3.10.1, we then have
c=2""PP and p=p. Thus

1f1E, =fulfPdn.

defines an equivalent norm on L,. Following Peetre-Sparr [1], we can now
consider the limiting case p=0. Let suppf denote the support of f, i.e. any
measurable set E, such that f=0 outside E and f#0 almost everywhere on E.
Clearly E is unique up to sets of measure 0. Then

lim, o || f1If, = Jedu=p(suppf).
We thus define L, to be the space of all measurable functions f, such that

I fllL, = u(suppf)<oo.

Since supp(f+g)=(suppf)u(suppg), we see that L, is a 1-normed space.
Note that if 0<p<1 we have

IS, =140 fllL,
1AL, =PI,
Moreover we have
H)"f”L,J: Hf“Lo, A#£0
(since f and Af have the same support). [
The example above is typical. The quasi-normed Abelian groups we shall
consider in the sequel are in fact vector spaces, where the quasi-norm is not
homogeneous. In a quasi-normed vector space we require not only the pro-

perties (1) and (3) but also

[Aall ,=1Alllally, A scalar.
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Now let A and B be two quasi-normed Abelian groups. Then a mapping T
from A into B is called a homomorphism if T(—a)= —T(a), T(a+b)=T(a)+ T(b).
The homomorphism T is bounded if

[T 4,8=5UP,z0ll Talp/llall 4 < 0.

The bounded homomorphisms are continuous and constitute a quasi-normed
Abelian group. We shall let .o stand for the category of all quasi-normed Abelian
groups, the morphisms being the bounded homomorphisms. Sometimes we shall
also consider the category 2 of all quasi-normed vector spaces. In 2 the mor-
phisms are the bounded linear mappings, i.e., bounded homomorphisms satisfying
the additional assumption T(Aa)=AT{(a). Moreover, the morphisms constitute a
quasi-normed vector space.

The notion of compatible spaces A, and A, carries over without change.
We also have the analogue of Lemma 2.3.1. In fact, if 4; is ¢;-normed then it is
easily seen that A(4d)=A,nA4, and Z(A)=A4,+ A, are c-normed spaces with
c=max(cy, c;). If A, and A, are complete then so are A(A) and Z(A4). (Use
Lemma 3.10.2)

If € is a sub-category of o/ we can form the category €, of compatible couples
A=(A,, A,). Here we can adopt the same conventions and notation as in Section
2.3. As a consequence the definitions of intermediate space, interpolation space(s)
and interpolation functor carry over without change. (See Definition 2.4.1 and
2.4.5)

3.11. The Real Interpolation Method for Quasi-Normed
Abelian Groups

In this section we shall consider the category ¢ of all quasi-normed Abelian
groups. For any couple 4 in &/, we can define the functionals K(t, a; 4) and
J(t, a; A). Clearly Lemma 3.1.1 and 3.2.1 still hold. We can also imitate the
definitions of the spaces K,,,q(/f) and Jo,q(,i) without changing anything. For
Jy,[(A) we use the discrete definition, which is equivalent to the continuous one
in the category 47, in order to avoid integration in the quasi-normed groups.

In the case 0<f<1 we can even extend the range of the parameter g, allow-
ing q to be any positive real number. Then we still have Lemma 3.1.3 and Lemma
3.2.2. The interpolation theorems 3.1.2 and 3.2.3 are still true in the category <.
It should be noticed that ||a|l, ., x and |al, , ; are no longer norms but merely
quasi-norms. This will follow from the next lemma.

3.11.1. Lemma. Suppose that A; is c;-normed. Then

) K(t,a+b; A)<co(K(cyt/cy, a; A)+ K(c t/cy, b; A)),
and

) J(t, a+b; A)<coJ(c t/cy, a; A)+J(c,t/cy, b; A)).
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Proof: If a=ay,+a, and b=by+b,; we have
K(t,a+b)<llag+boll 4o+ tlay +byll4,
<colllaoll o+ l1boll 4o) +te1(llay Il 4, + 11Dy 1l 4)
which implies (1). The second estimate is equally easy to prove. [

Using Lemma 3.11.1 we are now able to prove the analogues of the inter-
polation theorems 3.1.2 and 3.2.3. Here we prefer to formulate the result in
one theorem.

3.11.2. Theorem. K, and J, , are interpolation functors of exponent 0 on the
category of quasi-normed Abelian groups and K, , is exact of exponent 0. More-
over, we have

3) K(s, a3 A)<79,05° N allg, gk

where 0<f<1, 0<g< o0, or 0<8<1, g=00; and
e llallg,qs <Cs™8J(s, a; A).

Here C is independent of 6.

Proof: The proofs of Theorem 3.1.2 and 3.2.3 carry over without change as
long as we do not use the triangle inequality. As far as the K-method is con-

cerned, we shall therefore only have to prove that 4=K, (A4) is a quasi-normed
Abelian group. This amounts to proving the quasi-triangle inequality.
Using Lemma 3.10.3, we see that

Py, (@ +) < max (1,20 79Dy () + Py () -

Combining this inequality with Lemma 3.11.1, Formula (1), and with the equality

Py, (@(t/5)=5"°Py (@(2),
we obtain
lla+bllg,gx <max(1,2" =P cq(c, /co)’ (allg, gk + 161 .6x)-
Thus if 4; is ¢-normed, j=0,1, then A=K, (A) is c-normed with
¢ =c(1) —ectli max(i, 201 —q)/q) .
Using the same argument, it is easily verified that J, q(/T) is also a c-normed
space (with the same c).

In the proof of Theorem 3.2.3, we used the triangle inequality also when we
proved J, q(A)cZ( A). Therefore the proof of this inclusion has to be modified
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in the present situation. The way this modification is carried out is typical for
the modifications we shall need in what follows. _
In order to prove J, (A)<=Z(A4), we assume that 2(4) is c-normed and define
p by the formula (2¢)?=2. We can assume that c is large, so that p<g. Assuming
that a=),u, in Z(A) with u,e4(4) we therefore obtain from Lemma 3.10.2
K(1,a)<C(Q,K(1, u,)?)'?.
Using the estimate
K1, a)<min(1,27)J(2%, a)
(Lemma 3.2.1), we obtain
K(1,a)<C(}, 2 min(1,27°%)-(27J (2%, u,))) "7 .
Put p=g/p. Then p>1 and therefore Holder's inequality implies

K(1,@)<C(}, 2" min(1, 277 )1 (3, (20 (2", u,)y7) P,

where 1/p’=1—1/p. Since 0<0<1, the first sum on the right hand side con-
verges. Since pp=g, we therefore obtain from Lemma 3.2.2

K(1,a)<Cyqllaly g »
proving that
Jo. A= Z(A).

The proof of the fact that J, , is an interpolation method of exponent 6 will
follow from the K-part of the theorem and the equivalence theorem below. [

3.11.3. Theorem (The equivalence theorem). Assume that 0<6<1, 0<g< oo,
and let A be a couple of quasi-normed Abelian groups. Then J, (A)=K, (A)
with equivalent quasi-norms.

Proof : First we prove J, q(/—l)CKO, q(}i-). Take an element aeJ, q(Z), and assume

a=)  u,. We know that K(t,a) is a ¢c-norm. Choosing ¢ large and p so that
(2¢)=2, we have p=¢q/p>1, and, just as in the proof of the previous theorem,

K(t,a)< C(Zv(min(i, 27 J2%, u, ).
It follows that

K@2*, a)< C(Q,(min(1,2#7 ") J(2%, u,)))!/*
=C(,(min(1,2")J(2* ", u,_ ))")'"*.
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Thus we obtain, by Lemma 3.1.3 and Minkowski’s inequality,

lallg,gx < CQLL27H K2, a)h)'/e
=C {(Zu(z - uep(K(zu’ a))p)p)l/p} 1/p
<C{Q,[27 % (min(1,2)J (2, u, ) ]7) P} e
<C{Y,min(1,2) [, (27*J2" >, u, _ )] Py He
=C{),min(1,2")-27 0} 1ir {ZM(Z““’J(?‘, uﬂ))"}”‘z.

By Lemma 3.2.3, we conclude that
lallg. g x <Clally gy -

The converse of this inequality can be proved just as in the case of normed
spaces. In fact, the proof of the fundamental lemma goes over without any es-
sential change. If 4; is c;-normed we have only to change the value of the con-
stant vy, so that y is replaced by y-max(c,, ¢;). The reader is asked to check the
details for himself. When the fundamental lemma is established we immediately
obtain the desired result. [

It should be clear by now how to extend the results in Section 3.4. In fact,
Theorem 3.4.1 needs no change, neither in its formulation nor in its proof. The
proof of Theorem 3.4.2 has to be modified slightly. However it is only the proof
of part (a), the completeness of /_19, > Which has to be changed. We leave it to the
reader to carry out this proof with the aid of Lemma 3.10.2.

The definitions of spaces of class €x(6; A), %,(0; A) and %(0; A) (Definition
3.5.1) carry over without change. An equivalent formulation of this definition
will be given in our next theorem, which corresponds to Theorem 3.5.2.

3.11.4. Theorem. Suppose that 0<8<1. Then
(a) X is of class €x(0; A) if and only if

MA)=X <Ay -

(b) A complete space X is of class €,(0; A) if and only if for some q<1 we have

Ap =X cZ(A).

If X is c-normed we can choose q so that (2c)?=2.

Proof: Only part (b) needs a new proof. Assume that a=Y u, in X(4). By
Lemma 3.10.2 we have, since X is complete,

lalx <CQ, lu, I
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If X is of class %,(0; A) we obtain

laly<CQLR7°J2% u )M,
1e.

Ay, =X.
The converse follows as in the proof of Theorem 3.52. [

3.11.5. Theorem (The reiteration theorem). Let A=(A,, A,) and X =(X,, X,)
be two couples of quasi-normed Abelian groups, and assume that X; (i=0,1) are
complete spaces of class €(8;; A), where 0<6,<1 and 0,#0,. Put

=(1—n)b,+n6,, O<y<i.
Then

Rpo=Aoy 0<g<oo.
In particular, we have
(Aoy. g0r Ao, adma=A0,0» 0<gq<o0.

Proof: The proof of the inclusion X " chM goes through as in the normed
case (Theorem 3.5.3). The proof of the converse inclusion, however, has to be
changed. Assume therefore that aefio,q, and choose a representation a=) ,u,.
As in the proof of Theorem 3.5.3, we change variables and then we apply Lemma
3.1.3:

“a”}?mq < C(Zu(z—u(e—eo) K(Z"“’l =00 4: X'))q)l/q i
To estimate the right hand side, we note, again as in the proof of Theorem 3.5.3,
that

2ubo K(Z”(e‘ —00), u,; X')< C2r—vbo min(1,2(“_v)(0‘ —Bo)) J(2%u,; /'1) ,

and, by Lemma 3.10.2, that for any p>0, small enough,

K(t, a; X)SCQL(K(t, u,_; X)P)P .

p—ve
Using these two observations, we infer that (p=g¢q/p>1)

Ha“X,,,q < C(Zu z—ueq(zv(zuoo K(2““’1 —6o), Uy X’))p)q/p)l/q
<CUT[2749(L, (2% min(1,20 =) J(24 ", u,,_ ; A)P]e)Hie}ire
< C{Zv 2véop min(1, V6, —OO)P)(Zu(z—MGJ(zﬂ‘V, Uy s ;1))4)1/11}1/0
< C{Zv(zv(eo—o) min(1,2”(9‘ —90)))/)} 1/9(2“(2-#0‘](2#’ U, Z))q)l/q ,
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by Minkowski’s inequality. Taking the infimum and invoking the equivalence
Theorem 3.11.3, we obtain

lalx, ,<Clalz,,. O

Next, we draw attention to the fact that if ||-|| is a quasi-norm on A then
so is ||+||* for all p>0. The proof of this is obvious. Let us denote by (4)° the
space A provided with the quasi-norm | -||”. Note that a proper choice of p (see
Lemma 3.10.1) will make (4)” a 1-normed space. Now it is natural to ask for
a connection between the spaces Zeyq and the spaces ((4,)*°,(4,)""),- Such a
connection is given in our next theorem.

3.11.6. Theorem (The power theorem). Let p, and p, be given positive numbers
and put

O=np,/p,

p={1—n)po+np,,

g=pr.
Then

((AO)pOa (Al)pl)r],r =((A09 Al)O,q)p s

where O0<n<1, O<r<oo.

In the proof of the power theorem we shall work with the functional (cf.
Exercise 1)

K(x)(t9 a): Km(ta a; ‘Z)zinfa=ao+al max(“aonAo’ 4 ”al “Al) .
Since

K (t,a)<K(t,a)<2K (t, a),

the norm on ZM will be equivalent to @, (K (t, a)). We now have the following
lemma:

3.11.7. Lemma. Let p, and p, be given positive numbers. Then

K (s, a5 (Ao (4,)") = (K (2, a; g, 4,)F°,

s=t"Y K (t,a; Ag, A))P°7 7.
Proof : For simplicity we write

K. (0)=K_(t a; Ay, 4,),
Koo(s) = Koo(s5 a; (AO)PO, (Al)pl) .
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Now choose a, and a, so that (¢>0 is arbitrarily given)
K (t)<max(llaol 4, tlas]4) <1 +8) K (2).
Since at least one of the numbers
laoll 4o/ Ko(t) and tlla, /K (t)

is larger than 1 and both are smaller than 1+¢, we have

“aOHAo po tHal“A, o ,
Kma"((m(z)) ’(me) ><1+8

where ¢ -0 as ¢—0. This implies

laoilao ™ (tlailla )
it ()" (200 )

which clearly gives the lemma. {0

Proof (of the power theorem): If g=c0 we have r=co, and thus, with the no-
tation of the proof of Lemma 3.11.7,

lall oy, (as)p1), 0 ~SUPs> 05~ "K(s)=5suUp, ot~ ""HK (1)’ .

Since np, =0p this gives the result.
In the case g<w we also have r<co. Noting that K _(t) is a decreasing
function of t, we have

lalfcaorwo, (anory, » ~ JE (™K o(s)Y ds/s~ — [F (K o(s)Y ds™™
~[2sTm K (s)) .

In the right hand side we change the variable s to the variable t. By Lemma 3.11.7
the right member then becomes equivalent to

fg"t_"”"(K (t))_"'(”o‘”‘)d(K (t))Por
~[FtTMA(K (0 ~ 5t U(K @)Y dy/t .

This proves the theorem. [
The power theorem gives at once the following interpolation result.

3.11.8. Theorem. Suppose that T: A,—>B, with quasi-norm M; (i=0,1). Then
T:((Ao). (A1)m),,,r“’((Bo)p°’ (Bl)pl)rl,r
with quasi-norm M, such that

M< Mz)l —ﬂ)PoM;lm .
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3.12. Some Other Equivalent Real Interpolation Methods

In this section we describe a few other real interpolation methods which are
frequently used in the literature. These methods are known as “espaces de
moyennes  and “espaces de traces”. We shall give a brief presentation and also
prove the fact that these interpolation methods are equivalent to the K- and
J-method. (The historical development is the reverse one, the K- and J-methods
being more recent than the methods introduced in this section.) In order to
align the notation with the rest of the book we have modified the original defi-
nitions given by Lions (cf. Notes and Comment).

“Espaces de moyennes”

For simplicity we shall work in the category # of all Banach spaces. If 4 is a
Banach space we let L%(A) denote the space of all 4-valued, strongly measurable
functions ¥ on R, ={t:0<t< 0}, such that the norm

() 1y = (G [t} [ dt/t) P

is finite. Here we take 1< p< o, with the usual convention when p=co.

Let p, and p; be two numbers such that 1<p;<co (j=0,1) and put p=(p,,p,).
Moreover let 6 (0<8<1) be given. For a given compatible Banach couple
A=(A,, A,) we now define the space S=S(4,p, ) as follows: S is the subspace
of Z(A) consisting of all a for which there is a representation

a=[Qu(t)dt/t (convergence in Z(A))
where u(tye A(A), 0<t<oo and
maX(llt"’u(t)llL;,O(Aop fje! _0“(I)I|L;,1(A,))< @ .

The norm on S is the infimum of the left hand side over all admissible u.

The space S(A4, p, 6) is one of two spaces called “espaces de moyennes” in
Lions-Peetre [1]. A second space, denoted by S=S(A,P,0), is defined by means
of the norm

inf, =ao(t) + a1 {t) (I tsao(t)” L% (4o) + ¢t _801(t)“1";,1(,4l)) .

3.12.1. Theorem. Let p=(p,,p,) and 0 be given, so that 1<p;< o, j=0,1 and
0<8<1. Put

0
P Po 28

1 1-6
+

Then, for any Banach couple A, we have, with equivalent norms,

S(4,p,0)=5(4,p,0)=4,,.
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Proof: In order to prove the first equality S=S3 (this is essentially the equivalence
theorem), we assume that a= [Fu(t)dt/reS. Put

ao(t) = fsu(tt)dr/z,  a(t)=[Pu(tr)dr/t.
Then, by Minkowski's inequality,

167 a0t} g a0y <O 1™ uD)] g a0
and

It 0@y @)l g 4y <A =0 2" ~u®)l 13 ()

which clearly implies ScS. Conversely, assume that a=ay(t)+a,(t)eS, where
t~%ag(t)e Lk (Ao) and t' ~%a,(t)e L% (4,). Let p be an infinitely differentiable func-
tion with compact support on R, such that j'f)" p(t)dt/t=1 and put

afty= [y plt/vyafvyde/z.
Then dy(t)+4d,(t)=a, dft)->0 as t—-0 or > and

_6 -~ —_
i 'tao(t)HL;,o(Ao)SCHt eao(t)nu;,o(,;o),

||t1"o‘td;(t)”L;,‘(Al)<C||tl_oal(t)“L;l(Al)'
Writing u(t) =tdy(t)= —td (¢t} we then have

[ ueydr/t = [§ ag(t)de — [T @ (1) de = do(1) +d; (1) =a
and
Ha”s<maX(Ht_o't&o(t)HL;D(AO), ]|t1—e't‘7'1(t)|[L;,l(A,))

< Cmax([lt“’ao(t)n,‘}ouo), et ~9‘11(t)‘|1‘5lu,)) .
This clearly implies S <S. Thus we have proved that S=S5.

Next, we prove that S=4, » (this is essentially the power theorem). We shall
use the fact that

(1) lallg~ infa:ao(:)+a,(z)(llt—oao(t)”igouo) + |t —901(t)|]Z§,1(AI))1/p .

In order to prove (1) we choose a, and a; so that a=ag(t)+a,(t) and

(1% ag(O1 g+ I s IE} ()7 <0

*
P



72 3. The Real Interpolation Method

If a0 we can assume that each of the two terms on the left hand side is positive.
Thus, choosing A appropriately, we see that

Hal|§<max(l]t_oao(/lt)HL;O(AO), |1tl—ea1(/u){|1,;,l(,4,))
=max (4’ ”t_eao(t)HL;*,o(Ao), A _Bal(t)”L‘;l(A,))
—{|t“’a0(t)(|L; Loy 1 ~Pa (117, 4

(Ht‘oao(t)] L}, (A0)+ Htl ba ( )”L}‘, (Al))l/p.

This implies half of (1). The remaining half is proved in the same way.
Using (1) we see that

lall§~ [&inf(e =% [ag(e)] % + ¢! =07 la, (0115 de/t
~[& e minf(ldo(M 1 +tla, (%) de/T,

where np, =0p, d(t)=aj1), (=0,1) and "=, Using the power theorem we
therefore see that

(S =((A0)™, (41,1 = (Ao, A1y,

which proves that S=4,,. I

“Espaces de traces’

If u is an A-valued function on IR, we let v’ denote the derivative in the sense
of distribution theory. We shall work with the space V™=V"(4,p,0) of all
functions u on R, with values in Z(A4), such that u is locally 4,-integrable, u™
is locally Al-integrable and such that

Jullym = max ([ °- u([)”L‘;O(AO)a fle?= u(m)(t)”L;,I(A,))

is finite. We assume that 0<f8<1 and 1<p,<c0, 1<p, <. Then |-|,m is
a norm, and V™ is a Banach space.

We shall say that u(t) has a trace in X(A) if u(t) converges in X(A) as t—0.
Then we put

traceu=1lim,_ou(t) .
The space of traces of functions in V™ will be denoted by T™=T"(4, p, 6). Thus

T™ is the space of all aeX(A), such that there is a function ue V™ with traceu=a.
Introducing the quotient norm

lallzm = infiycen=alullym

T becomes a Banach space.
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3.12.2. Theorem. Assume that 0<0<1 and 1<p;<co for j=0,1. Then

Tm("za ﬁa 6):"10,1: s
where
1 1-6

P Do

0
+—.

121
Proof: We shall prove that

2 T™(4, b, 0)=S(4, 5. )

which gives the result in view of Theorem 3.12.1.
First assume that aeT™ Then a=traceu for some ueV™ Let ¢ be an
infinitely differentiable function with compact support on IR, such that

{Sodt/t=1.
Put
(1) = [ o(t/7)ux) de/x .

Then it is easily seen that
a=[o(t)ydtft = [Fo(1/r)dt/t,
if for some constant d

v(t)=d t"i"(t).
Clearly

w(t)=d [§ t/7)"e™(t/1)u(r)dr/T,
and thus

e 01/l g, aor = 1ED(O g, 10y S CHE U1y () -
Moreover, since

u(t)=d [ (t/r)T"u™(t)dx/z
we also have

1001/l (ay SCHE™ U0y 0y

1t follows that {jafs<Clul,~ and hence T™cS.
Conversely, assume that aeS has the representation

a=[utydi/t.
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Then we put
u(t)= [ (1 —t/ry" " v(1/1)dr/x.
Clearly traceu=a and, by Minkowski’s inequality,
[l u(r)| Ly, 40y SC1 ll£%(1/0)] Ly (4o) = €1 [t~ u(e)] Ly (4o} *
Moreover
(= 1y"emu™(t)=v(1/1)
so that

29~ 1tmu(m)(t)“”,1(m)= ¢! —Gl;(t)HL;l(A‘) .
It follows that ae T™ and thus S<T™. 1

In Section 6.6 we shall need a modified equivalent definition of the space T™.
Let fi=(n,,n,) be given and define the space V"=V"™(A4,p,#) by means of the
norm

Hqu,m=max([|t"°u(t)l|L,},,o(Ao), ”tmu(m)(t)”z,;,‘(m)) .
Then we have

3.12.3. Corollary. Assume that 1,>0, n,<m and 1<p;<owo for j=0,1. Put

O=no/(no+m—n,), 1/p=(1-0)/p,+6/p,.
Then

|Ia{|29,p~inﬂraceu=a ”u”I;"'

Proof : First we note that

A3) Tallym~ max(It°u(e)ll g, (ag> 1177 td/A" w1y, (a) -

In order to see this we observe that (td/dt)"u(t) is a linear combination of t*u®)(z),
k=1,...,m. Moreover

tku(k)(t)=cm,k s‘loo (t/‘!)k(1 _ t/‘t)m-k_ 1‘['"14("')(1:) d”L‘/T
so that
17 U001y 4y SCIET U™ Oy, 4 -
Thus the right hand side of (3) is bounded by a constant multiplied by the norm

of uin V™
Conversely, we obviously have

(td/dDyu(ty = — {°(zd/d7)*u(t)dx/T
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and therefore, by Minkowsk{'s inequality,

1e~ *(ed/de) u®)] g, (ay SC I (/A U1y, (4, -
Writing ™4™ as a linear combination of (td/dtyu (k=1,...,m), this estimate
clearly completes the proof of (3).

Now we change the variable of integration on the right hand side of (3),

writing u(t)=uv(s), if t=5". Then

(td/dey"u(t) = c(sd/ds)" 1(s) .

1t follows that

Tullym~max(|s®o(s)] g oy, 5™ 17 (sd/ds)"0(5) ] g (a0

~ maX(HS"”v(S)HL;,O(AD), [[s€ 1)p+mv(m)(3)”u;, (4 B
With p=n,+m—n,; we finally see that
lullym~N0llpm -

Since traceu=tracev (p being positive) we get the result of the corollary. 0

313. Exercises

1. (Holmstedt-Peetre [1]). Let 4 be a couple of quasi-normed spaces. Define the
functional K (¢, a) by

K (=K/t,a)=inf,_ 44, (Iaol5,+ 7 [a,15,)177 .

Show that @, (K,(t, a)) is an equivalent quasi-norm on ZM for all p>0. Prove,
moreover, that

K, () =inf(1+(t/s))'" K (s),
where 1<p<g<® and 1/r=1/p—1/gq, and that
K (t)y=sup,(1+(t/sy) " K [(s),

where 1<g<p<cw and 1/r=1/g—1/p.
Hint: Use Holder's inequality and the Gagliardo diagram.
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2. (Holmstedt-Peetre [1]). Prove that (in the notation of the previous exercise)
K (D<K, (ta) (t>0)

iff for each ¢>0 and each decomposition a,+a, =a of a there is g decomposi-
tion by+b,;=b of b such that |, <lla] ,+e.

3. (Holmstedt-Peetre [1]). With the notation of Exercise 1, show that if
K,(t,bh)<K/t,a) (t>0)

holds for some p>1, then it holds for all p>1. Cf. Sparr [2].
Hint: Apply Exercise 1 and Exercise 2.

4. Prove that under suitable conditions on the spaces involved we have
(A x AR, A x AP, = (A, AL, x (4D, APy,

5. (a) (Lions-Peetre [1]). Let 4™, v=1,2 and B be compatible Banach couples.
Assume that T is a bilinear mapping from the couple (44 x 4§, A{") x 4%)
to B and that

1T(a™, a®)| 5, < Molla®ll g l1a® ]y »

IT@®, a®)p, <M [a®] 4 Ha(Z)”A(IZ) .
Prove that

T2, A, B,
if 0<0<1, 1/g—1=Y2_,(1/p,—1), 1<g<co. Generalize to multilinear mappings
and quasi-norms.
Hint: Apply Young’s inequality.

(b) Assume that T is bilinear and that, as in (a),
Ay xBy—C,

T:<A,xB,—»C,,
A, xBy,—C,

where 4, B and C are compatible Banach couples. Show that (h=T(f, g))

K, <Clf 4Kt g9)  (feA,, geZ(B))
K(t. W<CK( f)lglis,  (feZ(A), geBo).

Use this to prove that (feZ(A4), ge X(B))

K(t, ) <C[Ps™'K(st, f)K(st, g)ds/s,
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and then, if 1<1/p+1/q and 6=0,+0,, that

T:ZOM,XB -Cy, (0<6, 0<1,1<p,q,r<0).

81,qr
(Cf. O'Neil [1].)

In the next two exercises we introduce and apply the concept quasi-linearizable
couples.

6. (Pectre [10]). Let A be a compatible Banach couple. Assume that there are
two families of operators V() and V,(t), both in L(Z(A), A(A4)), such that there
is a number k=1 for which

Vo) +Vi()y=1 (identity),
IVo(t)all 4, <kmin(llall 4, tial ), (ac 4(0)
thVi(®all ., <kmin(jlall 4, tlal )

A couple A with these properties will be called quasi-linearizable. Show that for
such couples

K(t, a)<Vo(t)al 4o+t Vi(D)all 4, <2kK(2, a) .

If 4 is quasi-linearizable, B is any compatible Banach couple and P:B—A4,
Q: A—B are both linear and bounded with QP=I, then prove that B is also
quasi-linearizable. See Exercise 18.

7. Let Ay, AV and A be Banach spaces with A{’< A4, for j=1,2. Assume
that (4o, A{") and (4,, AY?)) are quasi-linearizable couples and let (V{(t), V{I(1))
and (V{P(t), V(1)) be the corresponding couples of operators (see Exercise 6).
Prove that if the operators V{(¢t) and V§Xt) commute and

1VP0al o <Cllall g0, Jik=1,2,
then (4,, A" " A'?) is a quasi-linearizable couple and
(4o, AP A(IZ))B,q =(A,, AY ))O,q N (4o, A(lz))(),q .

(See Notes and Comment.)

8. (Peetre [29]). Let 4 and B be compatible Banach couples. Prove that (0<8<1)
(i) TeL(A,, Bo)nL(A,, B)) = TeL(4,,,B,,) (0<p<oo),
(i) Te(L(4g, Bo), L(4,, By))y, = TeL(4, ,, B,,) (1<p<w),
(i) Te(L(Ag, By), L(4,, B,))g. o = Te (44,1, By ) -
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9. (Tartar [1]). Let 4 and B be compatible couples of normed linear spaces
and assume that A, cA,. Let T be a non-linear mapping, which maps 4, to
B, and A4, to B, and suppose that there are positive increasing functions f
and g and positive numbers a, and «; such that

ITa—Ta,| g, < f(max(la] 4, lla;ll 1) la—a 1%, ,

ITa| s, <g(lal s lla I, -

Show that T maps A=A,, to B=B, , where n=~0x,/0, a=(1—0)x,+0a,,
and r=og, and that there is a positive increasing function 4, such that

I Tal g<h(llal 4) lall4-
Hint: Use the power theorem to reduce the proof to the case ag=0o,=1.

10. (Tartar [1]). Let 4 and B be compatible normed linear couples and assume
that 4, = A,. Let U be an open set in 4, and let T be an non-linear mapping
from U to B, and from U~ A4, to B,. Moreover, assume that, for all aeU,
there is a neighbourhood V in 4, of a, such that

ITa—Ta,|g,<olla—a;l%,
ITayl s, <v(la.l%,+1),

where a,eVn A, and o,y are constants depending on V only. Let A and B be
the spaces defined in the previous exercise. Prove that T maps UnA to B.

11. (Peetre [10]). Let & be a functional defined on positive Lebesgue-measurable
functions f on (0, o). We say that @ is a function norm if

49 &(f)20 forall f,

2 P(f)=0< f=0 (ae),

3 O(fy<w = f<w (ae),

4 P )=AP(f) for A1>0,

) SOSTR ) = HNKTE 2.

Define the spaces K4(A) and J,(A) as in Sections 3.1 and 3.2 by replacing &, ,
by a general function norm @. Prove the analogues of Theorems 3.1.2 and 3.2.3
if @ satisfies the additional conditions

(6) @(min(1, 1)< o,

Y] fomin(1, =) f(0)dt/t < CH(f) for all f,

@®) O(f(A)<OA)P(f () forall f,
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where 8 1s finite on (0, c0). Prove the analogue of the equivalence theorem if 6
satisfies the condition

{8 6(4)min(1,1/2)dA/2< oo .

{There is an analogue of the reiteration theorem too. Moreover, it is sufficient
to require 6(1)=o{(max(1, 1)) as 1—0,0.)

12. (Lofstrom [4]). Let 4=(A4,,A,) be a compatible Banach couple. Assume
that A, and A, are Banach algebras with common multiplication. Prove that
AT(“ is also a Banach algebra. Conversely, prove that if for any given couple 4
the space Zeyq is a Banach algebra under the given multiplication then g=1.
(Cf. Chapter 4, Exercise 1.}

Hint: Use the couple (I, }) as a test couple and apply the discrete J-method.

13. (Pectre [20]). Let A=(4y, A,) and B=(B,,B,) be compatible couples of
normed linear spaces. We say that 4 is a (K-) subcouple of B if, for i=0,1,

1

A;<=B; and |a|=llals, acA4,,
and if

K(t,a; A)=K(t,a;B), acZ(A).
Prove that if A(A) is dense in A, and in Ay, then A4 is isometrically isomorphic
to a subcouple of the couple [ (0)={(l.(M; wy, Ag), I (M; w,, A,)) for suitable

M, w, and w,. Here I_(M; w, A) is the space of all functions f from M to 4 such
that

SUP e | f (M)] qo(m) < o0 .

(See Notes and Comment.)

Hint: Let M be the unit ball of 4(4") and put w(m)= {Im{l;l, i=0,1. The iso-
morphism is a— f, where f(a)={a’,a). Note that

[<d', a)|

'] g+t el

Kao(t9 a; ’Z)=Supa’¢0

and prove that K _(t,a; A)=K_(t,f,;1(®)). Finally, use Exercise 1.

14. Define the space T7= T;?’(E, P, 1) by means of the quotient norm
L P 17 P

where V™=V"(4,p,7) is as defined in Section 3.12. Prove that

T;n(/l ﬁ’ '-I):/Ie,p
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if 0<j<m, n,>0, n,<m—j and

0=(o+)no+m—ny), 1/p=01-6)/po+6/p,
and 1<p,< o0, 1<p,; <. {See Lions-Peetre [1].)
15. (Holmstedt [1]). Let ¢ be a continuous positive function such that u~¢(u)

is decreasing and ¢(u) is increasing. Suppose that 0<8<1, 0<p<1, 0<p< o
and 0<g<co. Put

Io(@)=(§5 (fo (=" p(st))Pds/s)"Pde/t) /7 ,
Li(@)=(J5 (7 (¢~ s~ p(st)Pds/s)¥Pdt/t)"/P .

(i) Prove that there is a constant ¢, independent of 0, p, p and g, such that if

q(1—p)
Oy = , when 0O<p<§,
(0] 6_p

qp
a1=p—_§, when O<p<i,

and if m=min(0,1—gq/p), n=max(0,1—q/p), then
¢, (@) @) <Py (9), j=0,1.

(i) Prove the following sharp form of the reiteration theorem:
Put X;=A4, , when 0<8;<1,0,#0, and 0<q;<co. Then there is a con-
stant ¢ which does not depend on n such that if 0=(1—-n)0,+40,, 0<n<1, then

e~ tnmm(l—m) ™ allz, <lalg, ,<cn™(t—n)"llall 5,

where m;=min(1/q, 1/q;), n,=max(1/g,1/q;), j=0,1.

Hint: The proof of the first part is by no means trivial although it depends only
on Minkowski’s inequality. For the second part use Holmstedt’s formula, Sec-
tion 3.5.

16. (Sagher [1]). The real interpolation method can be extended to quasi-normed
Abelian semi-groups 4 having a zero element. Thus assume only that |laf ,=0
with equality iff a=0, and that |a+b|, <c(Jall,+|b],). Let A, and A4, be
two quasi-normed Abelian semi-groups, and let A be a topological semi-group
and assume that 4, and A, are sub-semi-groups of A and

la,l,~0=a,—~0 in A, (i=0,1).
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Then define /T,,,q in the obvious way by means of the K-functional.

{a) Check that the following interpolation theorem holds:

If T: A-B is a quasi-linear mapping, i.e. if there are numbers M, and M,,
such that, for all g,eA;, we can find b,eB,;, such that T(ay+a,})=b,+b, and
I Ta;ll 4, <M;|ib]lg,, then T: A, ,—B,, and

I Tallg, ,<M; °*Milalg, -

(b) Check that the power theorem holds in this more general setting.

(c) Use the Holmstedt’s formula to prove the reiteration formula
(A_GO,‘IO’A-HM‘II)"'Q=Z0>‘1’ 0:(1 _’7)90'*"761 .
(See Chapter 5, Exercise 8, for an application.)

17. (Peetre [26]). For a given quasi-Banach space E with norm |-}, put

lall* =inf{35_ Ixfra= Y5 %}

Let N be the space of all acE, such that ||a||* =0 and let E¥ be the completion
of E/N in the norm induced by the semi-norm |-

(a) Prove that (E*)=E

(b) Prove that if A is a Banach couple, such that A(4) is dense in 4, and in
A,, then (4,)* =4, for 0<g<1, 0<f<1. (See Chapter 5, Exercise 9, for an
application.)

18. In a given category % an object A4 is called a retract of an object B if there are
morphisms I: 4—B and P: B—A such that PI is the identity.

(a) Prove that if Ais a retract of B in the category of all (quasi-)normed
spaces then A, is a retract of B,, with “the same” mappings I and P.

(b) Prove that if 4 is a retract of B then [°(A) is a retract of [!(B), s, and s,
arbitrary. (Cf. 5.6.)

(c) Prove that L (w,) is a retract of L(w,), w; positive. (Cf. 5.4.)

19. Let A be a dense sub-space of a Hilbert space H. Identifying H with its dual,
we then have A< H < A'. Show that (4, A"),, ,=H.. (Cf. Chapter 2, Exercise 14.)

20. (Cwikel [3]). Let 4 and B be uniform interpolation spaces with respect to
A and B in .#;. Show that the condition

K(t, b; B)<w(t)K(t,a; A) (all t>0),
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where (f)~ w(21), [T w(t)dt/t<co and ae A, implies that beB and

16l 5<Cllall,.
Hint: Use the fundamental lemma, and apply Theorem 1.6.1.

21. Let A be a compatible quasi-Banach couple. Prove that if EQ, ,=A, for
some >0 and some p>1 (>0) then 4,=4,. Generalize this to the case
Ag. po=A,, ,, for some 6; and p; with 6,#0,, and p,>1 (>0). (Cf. 3.14 and
Chapter 4, Exercise 4) Does the conclusion still hold under the assumption
Ay =4, ,,, Where 0<8<1, py#p,?

22. Show that L, is not discrete. (See 3.10 for the definition.)

3.14. Notes and Comment

The study of interpolation with respect to couples of Hilbert (Banach, etc)
spaces was motivated by questions connected with partial differential equations.
Applications of the real method to interpolation of L ,-spaces are given in Chap-
ter 5 and of Sobolev and Besov spaces in Chapter 6. The development of the
real interpolation method stems from Lions [1] in 1958, and from Lions-Peetre
[1], where the theory is developed for the first time. In the form given in this
book, including the results, the real method was introduced by Peetre [10] in
1963. A preview of the real method may be seen in the proof of the Marcinkiewicz
theorem (See. 1.7 for references.)

Several authors have done related work. See, e.g., Gagliardo [1], [2], Ok-
lander [1], Krein [1], Krein-Petunin [1] (a survey), Aronszajn [1], Calder6n [3],
Lions-Magenes [1].

The methods of Lions [1] (espaces de traces) and Lions-Peetre [1] (espaces
de moyennes) are equivalent to the K-method. This is discussed in 3.12. Gagliardo’s
[1], [2] method yields the same spaces (equivalent norms) as the K-method.
(See, e.g., Peetre [10] and Holmstedt [1].) Oklander’s [1] method is precisely
the K-method, and was found independently. Krein’s [1] notion, scales of
spaces, may be described in the following way. Let A, (0<a<1) be a family
of Banach spaces with dense inclusion, Ag < A, if a<f. The family (4,) is called
a scale if, given O<aoy<a<a; <1, 4, is of class C;0,(4,,, 4,,), where
a=(1—0ay+0a,. (Cf. 3.5.) Their minimal scale is A, ,, and their maximal scale
is 4, , (equivalent norms). (Cf. 3.9.)

Interpolation of Lipschitz and Hélder operators (cf. Exercise 9 and 10) has
been discussed by Peetre [17], who also considered the possibility of interpola-
tion of metric spaces. For the metric case, see Gustavsson [2]. Many references
are found in Peetre [17]. See also Tartar [1].

Extensions of the real method to interpolation of more than two spaces have
been given (similarly) by Sparr [1], Yoshikawa [1], Kerzman [1], and Fernandez
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[1]- Earlier (1966) M. Cotlar raised, in a personal communication, the question
whether an extension to general cones is possible. Sparr’s [1] work is an instance
of a generalization of this kind. An extension of the real method to the case of
locally convex topological spaces is found in Goulaouic [1]. The case of quasi-
normed Abelian groups, treated in 3.11, was first considered by Kreé¢ [1] (L, with
0<p<1), Holmstedt [1] (quasi-normed linear spaces), and Peetre-Sparr [1]
and Sagher [1] (the general case).

Instead of the functional ®,, more general functionals may be used (see
Peetre [10] and Exercise 11).

Moreover, instead of a couple (4, A,), it possible to utilize two pseudo-
norms Py(t, a) and P,(t, a) defined on some Hausdorff topological vector space A.
P, and P, are then used to define functionals, analoguous to the K- and the
J-functionals, denoted by M and N respectively. This generalization was pro-
posed by Peetre [1] (see also Yoshinaga [1]).

Interpolation of semi-normed spaces has been treated by Gustavsson [1].
In particular, he shows that the equivalence theorem holds in this case too,
with the obvious definitions of the K- and J-method.

Let F be an interpolation functor, and consider the couples AV =(4,,A4{")
and A®=(4,, A?). Put A=(4,, A"~ AP). Peetre [27] has considered the
question: when is it true that

F(A)=FAY) N F(A?®)?

The answer is it is true when, for instance, 4" and A‘® are quasi-linearizable
(Exercise 6), F=K,, and a certain commutativity condition is fulfilled: A4{"
and A are the domains of the commuting operators A, and A, acting in 4,,
with a supplementary assumption on A, and A, (cf. Exercise 7 and 6.9). Triebel
[4] has given an example of a couple for which equality does not hold when
F=K,,, as an answer to a question posed by Peetre. For results and applica-
tions, see Peetre [27] and the references given there.

There is an obvious question (first considered by Mitjagin [1] and Calderéon
[3], cf. 5.8): Is it possible to obtain “all’ interpolation spaces by some K-method?
For certain couples, the answer is “yes” (cf. 5.8). A precise formulation of the
question is the following: Let 4 be any given couple and A any interpolation
space with respect to 4. Is it true that

K(t,b; A)<K(t,a; A), acA,
implies that be A and

bl 4<Cllal 42
The answer is, in general, “no”, as an example by Sedaev-Semenov [1] shows
(see Exercise 5.7.14). Peetre [20] has given a contribution to the problem: For

which couples 4 and B is it true that (ae Z(A), be Z(B))

K(t, b; B)<K(t, a; A)
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implies that TeL(A, B) exists, such that b=Ta? He employs the result in
Exercise 13 and the concept retract of Exercise 18. Clearly, when B=A, any
compatible Banach couple 4, for which the answer is yes to this question, also
yields yes to the first question, in view of Theorem 2.4.2. Couples for which the
answer is yes to the first question are called K-monotonic.

Recently, M. Cwikel in a personal communication has shown that, for any
compatible Banach couple A4, the couple (4, ,, A, ,,) is K-monotonic, pro-
vided that 0<0,<1, 1<p; <0 (i=0,1). Cwikel applies the retract methods in-
troduced by Peetre [20] and Sparr’s [2] result for weighted L -spaces mentioned
below in 5.8. (Cf. Exercise 18 and 13.) In particular, the couple (B} . B} )
of Besov spaces (see Chapter 6) is K-monotonic (s5;cR,1<p;, ;< 0), as well
as the couple (L, .0, L,,,) (1<p;, q;< 0, ¢;<p; (i=0,1)) (cf. Exercise 1.6.6).

3.14.1—2. As we remarked in Chapter 2, we use categories and functors only
in order to obtain greater precision of expression.

The discrete versions of the K- and the J-method are frequently used in the
applications, see, e.g., Chapter 6. They are also convenient for the extension of
the real methods to the quasi-normed case in 3.11.

3.14.3. The fundamental lemma, employed when proving that K, and J,, are

equivalent, exhibits a universal constant. The least value of this constant is
unknown to us. Peetre (unpublished) has shown that it is at least 1/2.

3.14.4. The inclusion (b) in Theorem 3.4.2 reflects a general inequality, in a way
a converse to Holder's inequality:
Let f be a positive and quasi-concave function on R_, i.e.

fs)<max(1,s/1) f(2).

Assume that 0<p<q<oo. Then

(5 fO)yde/n 1< g p™ (B(1—0) 2~ P (f5(c=° f(@)y dejn)''7,
where there is equality for f(t)=min(1, t).
The new feature is that the best constant is determined. This is an unpublished

result by Bergh. The inequality goes back to Frank-Pick [1]. (Cf. Borell [1].)

3.14.5—6. We have, in fact, proved_ more than Theorem 3.5.3 states. We have
proved that if X, is of class Cx(8;; A), i=0,1, then

X, ,SAg,-
Conversely, if X, is complete and of class C,(0;; A) then
X, .04,

4 g °



3.14. Notes and Comment 85

The assumption that 4, 4 are complete in the last statement of Theorem 3.5.3
is not indispensable. This is a consequence of Holmstedt's [1] formula in 3.6
(see Exercise 15, where a sharper version of the reiteration theorem is found).
Holmstedt [1] proved his formula in the quasi-normed case and with 0<g;< 0.

3.14.7. Theorem 3.7.1 was essentially presented by Lions [ 3] and Lions-Peetre [1].

The dual of 4,, when 0<g<1, has been investigated by Pectre [26]. He
showed that A4 ,=4,, (0<g<1), A4 being a compatible Banach couple with
A(A) dense in A, and in A4,.

3.14.8. Compactness theorems of the type:

T:Ay,—B, (compactly),
T:A,—B,

imply that
T:A,,~B,, (compactly),

i.e. more general than those in 3.8, have been given by Krasnoselskij [1], Krein-
Petunin [1] and Persson [1]. In those theorems, the couple B is subject to an
approximation condition.

3.149. As we noted earlier, Theorem 3.9.1 is related to Krein-Petunin’s [1]
minimal and maximal scale. The theorem is due to Lions-Peetre [1].

3.14.10—11. These sections are taken over from Peetre-Sparr [1]. Applications
of the interpolation results can be found in Chapter S and Chapter 7. Related
results have been found by Sagher [1] (cf. Exercise 16).

3.14.12. The space S(4, p, 0) is the “espace de moyenne” introduced by Lions-
Peetre [1], but with slightly different notation. In fact, let £, and ¢, be any two
real numbers such that &,¢; <0 and (1 —-0)¢&,+60¢&, =0. Making the transforma-
tion t=1%17%, we see that the norm on S(4, p, 6) is equivalent to the infimum of

max(llti"v(r)l},_}o(,io), 1|‘C<‘U(T)HU;,1(A,)),
where a= 53" v(t)dz/7. After the additional transformation t=e¢*, we see that
the norm on S(4, p, 0) is equivalent to the infimum of

max ([ (e [w(x)| 4, )odx) 7, ([2 (5™ [w(x)]] 4, )" dx)!'71)

where a= f“_"ww(x)dx. But this is just the norm on the “espace de moyenne”
S(po» £o> Ag; P1» €15 A) introduced by Lions-Peetre [1].

By a similar transformation, it will be seen that our space S(4,p,0) is the
space S(Po, &g, Ag; P1» &1, A;) defined by Lions-Peetre [1].
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Theorem 3.12.1 was first given by Peetre with a different proof. He also
proved the theorem in case one or both of the numbers p, and p, is o (see
Holmstedt [1]). Thus Theorem 3.12.2 and Corollary 3.12.3 also hold in the
case p,=0c0 Or p;=c0.

Writing o, =#,—1/po. #,=n,—1/p,, we see that the norm in our space
V™4, p,#) is equivalent to

max (3t [u(®)] ., )odt) 7o, (JF= |u™ @) 4, )P di)te),

which is the norm in the space V,(po, %y, Ag; P1» @1, A;) introduced in Lions-
Peetre [1]. As a consequence our space T™(A,p,6) is equal to their space
T%(pg» 0y, Ao P1> %y, A;) provided that 6 is given as in Corollary 3.12.3.

Lions-Peetre [1] are also working with more general trace spaces, using the
trace of the derivatives of u. (See Exercise 14.)



Chapter 4

The Complex Interpolation Method

The second of the two interpolation methods which we discuss in detail, the
complex method, is treated in this chapter. Our presentation follows the essential
points in Calderén [2]. The results are analogous to those obtained for the real
method in Chapter 3, but they are frequently more precise here. We make a
comparison with the real method in Section 4.7. The proofs in the first sections
are more detailed than in the later sections.

Throughout the chapter we consider the category 48,, consisting of compatible
Banach couples.

4.1. Definition of the Complex Method

We shall work with analytic functions with values in Banach spaces. The theory
of such functions is, as far as we shall need it, parallel to the theory of complex-
valued analytic functions.

In this section we introduce two interpolation functors C, and C? using
the theory of vector-valued analytic functions. This will lead to an abstract
form of the Riesz-Thorin theorem.

Given a couple 4, we shall consider the space % (A4) of all functions f with
values in X(A4), which are bounded and continuous on the strip

S={z:0<Rezx 1},
and analytic on the open strip
So=1{z:0<Rez<1},
and moreover, the functions ¢— f(j+it) (j=0,1) are continuous functions from

the real line into A;, which tend to zero as [t|—oco. Clearly, F(A) is a vector
space. We provide & with the norm

IS | 3 =max (sup [ £ (i)]| 4, sup | f (1 +i0)] ,)-
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4.1.1. Lemma. The space & is a Banach space.

Proof: Suppose that Y, | f,ll&<oco. Since f,(z) is bounded in X(A), we have

I £ S max(sup|l f,(i0)] £(ay SuUp [ f(1+it)] 2(2))-

Since A;<X(A4), we conclude that

15 s < fall 5

By Lemma 2.3.1, we know that X(A) is a Banach space. It follows that Yol
converges uniformly on S to a function f in XZ(A4). Thus f is bounded and con-
tinuous on S and analytic in S,. Furthermore, | f,(i+if)l <[/l and thus
Yo LG +it) converges uniformly in ¢ to a limit in 4;, which must coincide with the
limit in X(A). Therefore, f(j+it) JeA; and Y /(/+zt) converges uniformly to
S(i+it) in A;. But then it follows that f— F,and thaty,, f, convergesto f in # [

We shall now define the interpolation functor C,. The space A[(,]—CG(A)
consists of all acX(A) such that a=f(0) for some feF (A). The norm on Apg is

lalig=inf{|lf15:f(0)=a,feF}.

4.1.2. Theorem. The space Aw] is a Banach space and an intermediate space with
respect to A. The functor C, is an exact interpolation functor of exponent 6.

Proof : The linear mapping f— f(0) is a continuous mapping from #(4) to Z(A)
since Hf(9)[|;(z)< | f1#. The kernel of this mapping is ‘/Vo={f:fe_9,f(9)=()}.
Clearly, Ay, is isomorphic and isometric to the quotient space % (4)/ #. Since
#g is closed, it follows that Apgy is a Banach space. Moreover, since [af yz=
7)) 3 < 1 /1l we obtain A= 3(A). i

Taking f(z)=exp(6(z—0)*)a, we also see that A(A)CAU,] Thus A is
an intermediate space with respect to A.

Next, we prove that C, is an exact interpolation method of exponent 6. Thus
assume that T maps A4; to B; with norm M, (j=0,1). Given acAy and £>0,
there is a function feJ(A) such that f(G) a and | fllz</|allj+e Put
g(z)=MZ 'M[*T(f(z)). g belongs to the class #(B). Moreover, ||g|s<|flls<
@l +¢. Butnow g(0)=M§™ ' M °T(a) and hence we conclude that | T(a)l|y <
ML M |lgllz < MLIOME |]al|w]+g’, where &=M} °M%. This gives the
result. 0

Now we shall introduce a second complex interpolation method. This is based
on a space %(A) of analytic functions, defined as follows. The functions g in %(A)
are defined on the strip S with values in X(4). Moreover they have the following
properties:

(@) g gz < eI +1z0),

(i1) g is continuous on S and analytic on S,,,
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(iii) g(j+it;)—g(j+it,) has values in 4; for all real values of ¢, and ¢, and for
j=0,1, and
Al)

4.1.3. Lemma. The space %(A), reduced modulo constant functions and provided
with the norm ||g|le, is a Banach space.

g1 +it)—g(1+it,)
t =1,

glit,) —g(it;)
ti—1y

? 11,02
Ao

lglle= maX<Supn,tz

is finite.

Proof: From the conditions it follows easily that if h#0 is a real number then

|

Thus we obtain

g(z+ih)—g(2)

<
- < lgls-

Z(A4)

lg'2)ll s Slglle (zeS).

We therefore see that if [g[,=O0 then g is constant. This implies that 4 modulo
constants is a normed space. We also see that (ze S,)

19(2) = g(O)ll sz) < 121 19 -

Now suppose that Y, lig,ll¢ <co. Then },(g,(z)—g,(0)) converges uniformly
on every compact subset of S,. The limit g(z) satisfies (i) and (ii). Moreover it
follows that the series 3 ,(g,(i+it,)—g,(j+ity) converges in A;. Thus
gij+it;)—g(j+ity)e A; and is the sum of the series zn(gn(j+it1)—g”(i+it2)) in
A;. Therefore ge%,i.e. 4 is complete. [

We now define the space C°(4)=A4"" in the following way. For a given 0
such that 0<0<1 we let A consist of all acZ(A) such that a=g'(6) for some
ge%(A). The norm on A% is

lal®=inf{llgls: g'(0)=a,ge%}.

4.1.4. Theorem. The space A is a Banach space and an intermediate space with
respect to A. The functor C? is an exact interpolation functor of exponent 0.

Proof: Since [g'(0)ll sz <lglly, we see that the mapping g—g'(f) from ¥ into
X(A) is continuous. The kernel 47 of this mapping is closed and the range is
A", The norm on A!. The norm on A” is the quotient norm on ¢/ 4", Thus
A'® is a Banach space. Obviously, A%< X(A4). If ac4(A) we take g(z)=za and
then we see that A(4)< 4.
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In order to prove that C? is an exact interpolation functor of exponent 6, we
assume that T:4,-B; with norm M, for j=0,1. Then we choose a function
ge%(A), such that g (9) a, gl <lla®+¢. Consider the function

hz)=[ My~ M7 T(g) =5 — [ (log Mo/M ) M3~ MT" T(g(n)) dn.

The integral is taken along any path in § which connects 0 and z. If the path has all
its points in S, except 0 and possibly z we may integrate by parts. In fact, if €S,
we have d(T(g(n)))/dn=T(g'()) and g'(n) is bounded and continuous on S,. Thus
d(T(g(n)))/dn is continuous on S, and has bounded norm in Z(B). Thus we may
integrate by parts, and we obtain, for any path in S,

h(z)= {5 M§™" M1 " T(dg(n)),

where in general the integral is to be interpreted as a vector-valued Stieltjes
integral. It follows that

[h(2)]| 55 < clz].

Next we note that T(g(j+it)) has its values in B; and is a Lipschitz function in
B;. Thus it follows that

G +it,) = h+it )] 5, < M7 [2 | T (dg( + it)] 5,
if t, <t,. But the right hand side is bounded by

§i2 ldgG+it)] ¢, < (t2~11) I gllg-
It follows that

Ihllg < llal® +e.

Now
h'(e>=M?;1M;"<i T(f(n») — M3 M T(a).
d?’] n=60

This proves that T(a)= M}~ MS i'(§)eB¥, and that
IT@I" < M5~ MY llal +¢'.
This gives the result. [
In general, the two spaces Ay, and A are not equal. The question of the
relation between these two spaces will be discussed in Section 3. The main interest

will be attached to the space A,. We shall consider the space A" more or less as a
technical tool.
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4.2. Simple Properties of Ajg;

We shall prove two simple results concerning inclusion and density properties
of the spaces (4, Ay )g-
4.2.1. Theorem. We have

(@) (Ao, A ey=(A41, Aoks —ey (With equal norms),

() A, cAp=(Ap, A <(Aos Aihey If Go<0y,

(0 (4, A=A if 0<O<I.
Proof: In order to prove (a), we have only to note that f(z)e# (4,, A;) if and only
if f(1—2)eF (A, Ay). Using (a), we shall obtain (b) if we can prove that 4,4,
implies (Ao, Ay)g=(A4o, A1)y when 0<06. If ae(4y, A,), we can choose
feF(A) so that f(O)=a, |flz<lal,+e Put 6=40 where 0<i<1 and

o(2)=f(0z)exp(e(z>— 4?). Writing B, =(A4,, 4,)5, Wwe have 1Lf@+it)] 5 <
I fll z) It follows that

(0l 40,8,y < (lallig +¢) expe.

But now @(4)=a and (A4,, B,);<(B, B));;=B,; (immediate), and thus

Iiall[@] <c ”(P(/I)H(AD,BI)W <c ”90“7(,40,31)-

It follows that |la||5;<cllally. (c) is obvious. [

4.2.2. Theorem. Let 0<0<1. Then
(a) A(A) is dense in Apy; _
) if A}) denotes the closure of A(A) in A; we have

(Ao, A1)[e] :(Aga A1)[0] =(A4,, A(l))[a] =(A8, A(l))[e] 5

{c) the space sz/Tm (j=0,1) is a closed subspace of A; and the norms coincide
in B;

j,

(d) (A, Al)[@]:(BOa Bl)[@]a with Bj as in (c).

The proof of Theorem 4.2.2 is based on the following lemma.

4.2.3. Lemma. Let F ,(A) be the space of all linear combinations of functions of the
form

exp(6z%)Y N_, a,exp(4,z)

n=1%n

where a,c A(A), A, real and 6>0. Then F o(A) is dense in F(A).
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Proof: Since |exp(6z2) f(z)—f(2)]|z—0 as 6—0 (6>0) for all feF(A), it is
sufficient to show that all functions g(z)=exp(6z2)f (z) with feF(4) can be
approximated by functions in % ,(A4). Put

9.2)=Y,g(z+2mikn), (n>1).

Clearly g, is analytic on S,, continuous on S with values in Z(4). Moreover,
g. is periodic with period 2=nin, and g,(j+it)e4; for j=0,1. Furthermore
g, +it) —g(i +it)l| ,,~0 as n— oo uniformly on every compact set of t-values and
g +in)ll 4, is bounded as a function of n and t. It follows that, for all s>0,
we have exp(sz?)g,(z) in the space % (A). Therefore, we can find s and n so that

lexp(sz*)g,(2) —g(2)] 5 <e.

But now g,(z) can be represented by a Fourier series

(1) gn(z)=zka,m ekz/", z=s+it,

where

ak"=(2nnm)—1 j’ﬁn;;'m gn(s+ it)e—k(s+it)/n dt.

Note that, by periodicity, the integral is independent of m. It is also independent
of s. In fact, the integrand is analytic and bounded in Z{(4). Thus the values of the
integral for two values of s will differ very little if m is chosen large, due to the
presence of the factor 1/m. But the integral is independent of m. Thus the integral
has the same value for the two given values of s. [t follows that

Gu=mn) " ", g +Hit)e TG j=0,1.

Then we have a,,c4(4). Now we consider the (C,1)-means of the sum (1), i.e.
we consider

k
Gmgn(z)=2[k[$m (1 - ml_*_l1) ak"ekz/n.

Then I|o,,,g,,(i+it)—g,,(j+it)||Aj—+O as m—o, uniformly in n Thus
lexp(sz%)(0,ugs—9n) >0 as m—co and so

lexp (s2*)0,9,— 9l 5 <2e.
But exp(sz?)6,,g,€F ,(A). This proves the lemma. 1[I

Proof of Theorem 4.2.2: (a) If ae Ay, there exists a function fe%(A), such that
f(6y=a. Then there exists geF,(A4), such that | f—gllz<e Therefore
la—g(0)ll, <& and since g(8)e A(4) the conclusion follows.

{b) Follows at once from (a).
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{(¢) Clearly, B,=A4, and B,cA,. Let us prove that the norm on B,
coincides with the norm on A,. Take aeB,. Then we can find a,e4(A4), such
that {la—a,|z <e. Consider flz)=a,e”’ " "eF(4). Then f,(0)=a, and
I fllg<llagl 4 +e€ ""la;l,. Since [a,llz <|f,is for all n, we conclude that
lalg,<lla,ll 4. But llall,<lalg, and so [a—a,l<la—a,lp<e Thus
it follows that [allg,<ée+la,lp,<2¢+al,, and hence |alyz <lall,,. This
proves that alig = llall 4.

(d) Obviously, (d) follows if we can prove that #(4)=%(B). Evidently,
F(B)=F(A). But if f(z2)e#(A) then f(j+ir)eB; (by the definition of B)).
Thus f(z)e#(B), proving (d). 0O

4.3. The Equivalence Theorem

We shall now study the relation between the two complex interpolation methods
C, and C° We shall prove that they are equivalent when applied to certain
couples.

4.3.1. Theorem (The complex equivalence theorem). For any couple A=(A,, A,),
we have

A=A and ||a< |alig.
If at least one of the two spaces A, and A, is reflexive and if 0<0<1, then
,Z[o]:/?["l and HaHm:HaH[(,].

Proof: Take ae A, and choose feF(A) sothat f(0)=a and || f||z<lali;g+e.
Then put g(z)=[3 f()d{. Then it is readily seen that ge%(4), and that
lglg<Ifllz. Moreover, g'(0)=f(0)=a. Consequently, [a|'<gls<|f]s<
lalljg+e& proving the first part of the theorem.

The proof of the second part is much deeper. Let us denote by P, j=0,1,
the Poisson kernels for the strip S. They can be obtained from the Poisson kernel
for the half-plane by means of a conformal mapping. Explicitly, we have that

e~ ™ Dgingms
sin?ms +(cosms — N2

P{s+itr) = j=0,1.

4.3.2. Lemma. If fec%(A) we have
(@) log |lf(9)“[e]<2j=0,1 f"—"wlog “f(]"*‘if)“Aij(e, 1) dt
. 1 1-6 1
(i) £ O)lg < (m 1w l|f(it)|‘A0P0(0’T)dT> '(5 [ f (A +iv)lf 4, Py(6, T)df)

]

({iD) I/ Ol < Xj=o.1 JZ 1S G+i0)]4,P(0, ) dr.
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4.3.3. Lemma. If fe%(A) and if f has the property that

T .. .

& (flit+im—1 (i)
converges in Ay on a set of positive measure as h—0 (hreal), then f’(G)e/I[(,]
for 0<0<1.

Proof of Lemma 4.3.2: Let ¢; be an infinitely differentiable bounded function
such that

o =log|f(+i)] 4, (G=0,1).

Let @(z) be an analytic function such that
Red(z) = [© @o(t) Polz, T)dT + (2, ¢ (1) P (2, T)dT.

Then Re®(j+it)=¢(it), j=0,1 and @ is continuous and bounded on S. Thus
exp(—P)-feF#(A4). Since

lexp(—=@( +it)-f (+in)ll ,,<exp(— @ ) [ f(+iD)] (<1

it follows that [exp(—@)f | z<1. Thus

lexp(— @)/ g <1.

Therefore we conclude that

log ||/ (O)lin<Re@(O) =3 ;01 |2, ¢ i0)P (6, D)dr.

Taking decreasing sequences of functions ¢, and ¢, converging to log| f(it)|[ ,
and log|| f(1+it)|| 4, respectively, we get (i). In order to get (ii), we apply Jensen’s
inequality with the exponential function to (i). (Note that [* Py(@6,1)dt=1—0
and {¥_ P,(0,7)dt=0.) Finally, (iii) follows from (ii) by the inequality between
the arithmetic and the geometric means. []

Proof of Lemma 4.3.3: Put

=)~ (fz+i/n)—f(2).

Then || £,(it) =/ (i)l 4,0 as n,m—co for all £ on a set E of positive measure.
Further, we have that exp(ez?)f,(z)e#(A) for all ¢>0. From Lemma 4.3.2
we obtain

log [ (/y(6)—/u® e
<o JZologlle U R (f 4 i0) ~fui+ i) o, PO, )
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Since || f,(+i0) =Sl +it)l 4, <21 f |y, and since | f,(it) =f(it)ll 4,0 forall teE,
we see that the right hand side tends to —co as n,m—co. (Note that Py>0.)
Thus log llexp(e0?)(£.(0) —fulOMg— —© as n,m—oco, and, consequently,
I f0) =10l (—0. Therefore, f,(0) converges in Ay. But f(6) converges in
Z(A) to f(0). Hence f'(O)eAy. O

Completion of the proof of Theorem 4.3.1: We shall prove that if one of the spaces
Ay and A, is reflexive then A< Ay and |allg < /al'™. By Theorem 4.2.1 we
may assume that A, is reflexive.

If fe%(A) then f(it) is continuous and therefore its range lies in a separable
subspace V of A,. Put f{z2)=(f(z+i/n)—f(z))-n/i and let R, (t) be the weak closure
of the set {f,(it):n=m}. Put R(t):ﬂmRm(t). Then R,(t) and R(t) are bounded
(uniformly in t and m) subsets of 4,. Since R,(f) is bounded and weakly closed,
and since the unit sphere of 4, is weakly compact (4, is reflexive), we conclude
that R, (t) is weakly compact. Therefore R(t) is non-empty. Now let g(t) be a
function such that g(t)e R(t) for each t. Since R(t)=V, the range of g is separable.

We shall prove that

M) fi)=f©)+ifyg(x)dr.

Let L be a continuous linear functional on 4,, and put ¢()=—iL(f(ir)). Then
the assumption fe%(A) implies that ¢ is Lipschitz continuous. Moreover,

L{f (i) =n(o(t+ 1/n)— (1)) .

The image of R, (1) under L is the closure of the set {n(p(t+1/n)—@(t)):n=mj.
The image of R(t) is contained in the intersection of these sets. If ¢ is differentiable
at the point f, the image of R(t) under L will therefore be {¢'(t)}. Consequently,
we have L{g(1))=¢@'(t) whenever ¢'(t) exists. But ¢ is Lipschitz continuous. There-
fore, ¢'(t) exists almost everywhere and is measurable. It follows that L{g(t))
exists almost everywhere and is measurable. Since the range of g is separable, it
follows that g is strongly measurable. Since the sets R(t) are all contained in a
bounded set, g(¢) is also bounded. Thus

L(f (in=i¢(t) =ip(0) +i o0 (D) dT=L(f (0)+i [, L(g(c))dr.

This implies (1).

From (1) we see that f(it) has a strong derivative almost everywhere. Thus
Lemma 4.3.3 implies that f(f)eA,. But f'(0) is a typical element in A"
Thus A" <Ay, More precisely, if aeA® we can choose fe%(A), such that
f(®)=a and || f] <lla|'+e¢. Consider the function

hy(2) =exp(ez®) f,(2)-
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Then h,e#(4) and |h,)z<elflg. Thus [h(O)g<e(lal”+e). But
llh,,(G)—exp(sﬂz)aHm tends to zero as n—co. Letting n—oco and then &—0
in the inequality

lalig <exp(—e0*)(|ih,(0)—exp(e0®)al g +e(lal® +e)) ,

we clearly obtain

“a”[o]<“a”m g

44. Multilinear Interpolation

We prove two theorems concerning multilinear interpolation. The second of
these will be applied later.

4.4.1, Theorem. Let /I‘“’_(v=1,2,_ ...,n) and B be compatible Banach couples.
Assume that T:X ¥, <, A(AV)— A(B) is multilinear and

“T(al"“aan)“liggMOI_[::l“av“A(;) _
(a,e 4(A™)
[T(ay,....a)l s, <M; H:: 1 llayl A
Then Tmay be uniquely extended to a multilinear mapping from Y 7. A[‘;{ to 1_3[9]
with norm at most M3 ° M4 (0<0<1).

Lvs<n

Proof (cf. the proof of Theorem 4.1.2): Put

gD =My MiT(f,(2), ... £i(2),

where f,e # =% (A"™). This is at first only defined for functions f, with values in
A(AY), but can be extended to Y & <, %, by Lemma 4.2.3. Now ge#(B)
and | |g”;¢<H1<vsn|f||9 Take a=(ay, ..., a,)=(f1(6), .. f(O))eZI$vSn (A%

with f,e#, and H1<v<,,1|f]|f;v<]_[1\v\n layl zep +e, >0 arbitrary. It follows
that
I Tallg< M5~ MY gl e <M MI[ =1 I £l 5,
<M’ MI([ <1 la,lag+9),

and, since ¢ is arbitrary and 4(A®) is dense in A}, 1 <v<n, this yields the desired
conclusion. [
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4.4.2. Theorem. Let A, v=1,...,n and B be compatible Banach couples. Assume
that T:Z(AVYOZ L., ,A4(A)~Z(B) is multilinear, the restriction to A
having values in B, i=0,1, and

IT@®, ..., a") g, <Mo[[5= il a4y (@VeAy),

IT@, ..., a")lg, <M [[1=1la 4o (@Pe4).
Then T may be extended uniquely to a multilinear mapping from

(AVYIDY < <n Al
to B9 with norm at most My~ °M%,0<6<1.

Proof (cf. the proof of Theorem 4.1.4): Put
h(z) =[5 M~ M T(gy(n), fon)s -, flm))dn,

where g,€%9,=%9(A"), f.eF =F(A™) with values in A4(4"), 2<v<n, the
integration being along any curve connecting 0 and z and lying in S, with the
exception of (possibly both) the endpoints. We may extend (multilinearly) the
definition of h to %, + 5<,<,F, by Lemma 4.2.3. Arguing as in the proof of
Theorem 4.1.4, we may write

h(z) =[5 M3~ M " T(dg,(n), o), .., f1))

for any path in S. Clearly, [h(2)lly<Clz|, and, for t,<t,, j=0,1, we obtain

A +it5) — h(i+it )l ,
<M T gy G+, Lo+, ., £ +i0)] 4,
<=t )lgile, [ Tocvenl Sl 5,0
ie, he¥=%B) and [hlg<ligile,][2<v<nllfillz,. Choosing g,e%, and
f.eZF, such that a=(ay,...,a,)=(g.(8),£20),.... £,(B)e(AVIDY &, 4(AM)

with “glﬂgll—[2<v$n”fv“§v< ‘|a1”(_2“>)w]l_[2<v$n]lavll2[5f+£,8>0 arbitrary, it
follows that T(a)=M} ° M4 h'(§)e B! and

IT(@) 5o < Mo~ M [hllg <M ™M g1 lg, [To<v<u 1 Sl 5,

<M, "Mi(la “(Zm)“’lnzsvsn lla, 2 +9) -

Because £>0 is arbitrary and A(A") is dense in Af}}, 2<v<n, the desired
conclusion follows. [
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4.5. The Duality Theorem

We shall now characterize the dual Ay of the interpolation space Aj,. We utilize
a multilinear result: Theorem 4.4.2, the equivalence Theorem 4.3.1 and a result
concerning the dual L,(4) of L,(A4): the space of integrable functions on R
with values in the Banach space 4.

4.5.1. Theorem (The duality theorem). Assume that A=(Aqy, A,) is a compatible
Banach couple, and that A(A) is dense in both A, and A,. Then

(Ao, Ay)jgy=(Ag, AN (equal norms,; 0<0<1).

4.5.2. Corollary. Suppose that, in addition, at least one of the spaces A, and A,
is reflexive. Then

(Ao, Aoy =(Ab, Ay (equal norms; 0<f<1).

The corollary follows at once by the equivalence and duality theorems.
For the proof of the duality theorem, we need a lemma.

4.5.3. Lemma. Let A be a Banach space. The dual of L,(A): the space of integrable

A-valued functions on R, is the space A(A'): the space of all functions g of bounded
variation on R such that g(s)—g(t)e A" for all s and t, and for which

191l acary=5upss, (s =1 (g(s)—geD]
is finite. The duality is given by
(1) g, > = [<dg(x), £ (x)>,

or, if f(x)=h(x)-a and h is scalar-valued, by
@ . >= 0 - gl avax.

Proof of Thorem 4.5.1: First, consider the bilinear functional {d’,a) defined on
Z(A)® A(A) (cf. Theorem 2.7.1), and use the density assumption. From Theorem
4.4.2 we infer that it has a unique extension to 4@ Ay, such that, for a'e A1
and ae Ay,

Ka',ap| < [|d'l| zerllall 5,,-

Thus, if a'e A" then a'e A, and @] 5,,<|d'|l 3001.
Secondly, let le Ay, i€,

@<z lalz,, — (aedy).
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Since /T[,,] is identified with a quotient space of F# (A4), | may be defined on the
whole of #(A4) with the same norm. Then the mapping

A(fo )= U )=la)  (f(O)=a)

defined on E = {(f, foeL (4o)@®L,(4,)] Elfef(ﬂ);fj(r) =f(j+it) P(0, 1)}
(P; being the Poisson kernels in Section 4.3) is continuous in the norm
”fo”L,(AO)+ I fi ”L1(A1)’ for we have (f(0)=a)

o Sl = @I < 110 g5 10l 3y <N (ol 2 cter + 11 )

by Lemma 4.3.2. E is a linear subspace of L,(4,)® L,(A4,). Thus, by the Hahn-
Banach theorem and Lemma 4.5.3, there is (gq, g,)€ A(Ap) @ A(A}) such that

max(”goHA(Az)), lg, ”A(A',))< ”l”Zm’]

and

Mo S)=KGos Jo> +Kg1, [0, o SDEL(Ag)DL(Ay).

Thus, taking f(t)=f(j+it) P{0, t), we obtain

la)=<go, S (i) Po(0,7)> + <g 1, f(1 +iT) P (0, 7))

for feF(A) with f(@)=a. It remains to prove that g(t)=g(j+ir) are the
boundary values of a function ge%(A’) such that Il(a)={g'(0),a) for acAy. In
order to find g, take aeA(A), and let f(2)=h(z)-acF (A), h being complex-
valued. Obviously, by the representation formula (2),

1(f)=h(0) l{a)= {go, h(i7) Po(6, )ay + {91, h(1 +i7) P,(6, 1))

= jh(ir) Py(0,7) Ed% {golt)aydr + fh(i +it) P(0, 7) dir {g,{t), a)dr.

Note that h(6)=0 implies that the sum of the integrals vanishes. We shall see
that this fact implies the existence of a function ge%(A4’) with the desired pro-
perties.

First we map the strip O0<Rez<1 conformally onto the unit disc |wj<1,
so that the origin is the image of the point 8, using, for instance, the mapping

exp(inz) —exp(inf)

ue) = exp(inz) —exp(—ind)’

Let k, be the function defined on |w|=1 except at the two points 1 and exp(2nif)
by the formula

~ d
keop)jtin)=——<gfv).ay, j=01.
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Then
3 fiwi=1 W)k (w)dw =0

if i is given by the formula hou=h, where h(§)=0. We can for instance take
h(z)=(u(z))"exp(ez?), with ¢>0 and n=1,2,.... Letting e—~0 we see that (3)
holds for A(w)=w",n=1,2,.... Thus the Fourier series of k,(exp(i)) contains
only terms with non-negative indices and so k, can be extended to an analytic
function, still denoted by Ea, on |wj<1. We now define a function k, on the
strip 0<Rez<1 by the formula k,ou=k,. Then the non-tangential limits of
k, at the line Rez=j coincide (almost everywhere) with d<{g (1), ay/dr, (j=0,1).
Moreover, k, depends linearly on a. Furthermore,

<max { [goll 4.llall 4o 194 ”A,Ha”m} <max {“90”/109 lg, ”A,} Ha”A(Z)-

d d
E<go(r)’ a> > SuUp, E<gl(1)s a>

[k (z)| < max {supr

Thus
lka(2)] < 1) 305

Define now the function k by <k(z),ad>=k,(z)(zeS,). Obviously
k(z)e A(A)Y = Z(A") (see Theorem 2.7.1), and k is analytic and bounded in S,.
Integrating:

g(z) = szuz k(z'ydz

along a path entirely in S,, we get a function g with values in X(A’), which is
analytic on S,,. Also, since its derivative k is bounded, g has a continuous extension
to S. Moreover, passing to the limit non-tangentially, we obtain

{gUtit+ih)—g(i+it), a) =ig(t+h)—g1),a> (j=0,1).
By the density assumptions, we have
gi+it+ih)—g(i+ity=i(g(t+h)—gf1)ed; (i=0,1).

Furthgrmore, geg({?) and | glle =max(ligoll scasp 911 404y))- But for any
ge%(A’) and feF(A)

l(a)= [ <dg(it), Py(6, 7) f (ir)>d + [ (dg(1 +ix), P, (6, 7) f (1 +it) D dr
=<g'0). 1 0),

because this is true for the generators of # 0(/1) (Lemma 4.5.3, Formula (2)), and
F o(A) is dense in F(4)). Clearly a' =g'(0)e A'"", and thus

la)=<g'(0), 1)) =<d', a)
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if fe#(A) with f(0)=a. Also,
@'l zae < ”9Hg=maX(HgoHA(Ab)a g, A(Ai))< “1“74{9’1- i

Proof of Lemma 4.5.3: First, assume that geA(A4’). We have to prove that
{<dg(x), f(x)) is meaningful, and defines a linear functional on L,(4) with
norm at most |igll 4.4, By a density argument, it is clearly sufficient to consider
continuous functions f with compact support. The integral can then be inter-
preted as the limit of Riemann sums

Zj<g(tj+l)_g(tj)7f(tj)> (tjgrjgtj+1)~

The absolute value of each term is bounded by gl 404 Il.f (z)] 4(¢;4,—1). Thus
we obtain

[j(dg(x),f(x))] < “g”A(A') ”f”L,(Ap

which is the desired estimate.
Conversely, let leL,(4), i.e.

< M Lacay 1S e

Clearly, with y; as the characteristic function of the interval I, (y 4a)=<g(?), a>
defines an A’-valued function g for t>0 and analogously —I(x ¢a)=<g(t),a>
for t<0. It follows that

19(s) = gDl 4 = suPyjq)y =1 <g(8) = g(0), DI < Ps =] ], cay

and thus (gl 44y <L, 4y- Moreover, we may write, with a Stieltjes integral,

1(;0) = [ (d/dx){g(x), a) dx = [ {dg(x), x,(x)- @

for any bounded interval I. The linear hull of functions of type x,a being dense in
L,(A4), we conclude that this representation is valid also for feL (A4). Now (1)
and (2) follow. 0O

4.6. The Reiteration Theorem

Here we show that the complex interpolation method is stable for repeated
use in the sense of the theorem below. For its proof, we invoke the equivalence
theorem 4.3.1, and the duality theorem 4.5.1.

4.6.1. Theorem (The reiteration theorem). Let A be a compatible Banach couple
and put

X;=A4p,; (0<0;<1;j=0,1),
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Assume that A(A) is dense in the spaces A, A; and A(X). Then

Xig=A4 0<n<1;equal norms),
where 0=(1—n)0,+n0,. Note that A(A) is dense in A(X) if Ay<=A;.

Proof: First we show that [alz, <lals, if acdAy. Take acdy; then
there exists a function fe% (A4), such that f(0)=a and | fllz<lal 4, +& >0
being arbitrary. Put f,(z2)=f((1—2)0,+z0,). Then f,(n)=a and

fiG+i)=f((1—))0,+it0, ‘90))51‘1[0,1:)(1' (j=0,1),
fiG+i)—0,  |t]—oo.
Also

Hf1”/(X)\ “f”f(l) ”a“A[el

This gives [laliz,,, <lall 1.,

Similarly, we have [allgm<llalze if aeA”, where Y,=A"1 (j=0,1).
To see this, choose ge%(4) such that g'(6)=a and |Ig}|g<{|a||,1m +¢,e>0
arbitrary. Put g,(2)=(0,—0,)" ' f(1—2)8,+20,). It is easily verified that
gleg(Y), gim=a und |g,lgw <lgllgay<lialga+e. Thus it follows that
fallgen < [lall zio1. _

To prove the converse inequality |lafl 5, <l alg,,, (@€ Xy,), we shall see that
it is enough to prove that /| 5,>llliz,,; (leAyy). In view of the first part of this
proof and the duality theorem it follows that

||l|1,71[9']= ”l”,}'[e] = ”l”(}fleol,;{‘[ﬁl)[n] ”l“x = Hl”X[ 1 (l Eg[s’]\),

since, evidently, 4(X) is dense in X, and in X .

From the first part of the proof and from the inequality || A = = [z,
follows that the norms on Aw] and X [ a8ree on A[{,] By assumption, A(A) is
dense in A(X) Since A(X) is dense in X {,p We conclude that A(A) is dense in
X, and in Aj,. But then we must have X|,;=A,, with equal norms.

The last observation of the theorem follows from Theorem 4.2.1. [

4.7. On the Connection with the Real Method

Let A be a compatible Banach couple. The next two theorems provide connections
between the complex and the real interpolation methods.

4.7.1. Theorem. The following inclusions hold

if 0<B<1.
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Proof : Since C, is an interpolation functor of exponent 6, the first part follows
at once from Theorem 3.9.1.
The second inclusion follows from the Phragmén-Lindeldf extension of the
maximum principle. Let aeAw], i.e. there is a function fe% (A4 ) with f(0)=
By the Phragmén-Lindeldf principle, we have, since K(t, f(j+it); A)< |If(}+zt){|A,
lalls, =sup,t ° K(t, f(6); 4)

<sup,t~*sup, || £ (04, ¢ sup, | f (L +i0)|%, < /115
Taking the infimum, this estimate completes the proof. [
4.7.2. Theorem. If 0<0,<0,<1,0=(1—n)0,+n0, and O0<p<co then
(Atoop Ao, )np=As, (equivalent norms).
If 1<p,; <00 (i=0,1) and 1/p=(1—n)/py+n/p, then
(/T,,O,po, /L,l,pl)[,,]=/10’p (equivalent norms).

Proof: The first assertion follows from Theorem 4.7.1 and the reiteration
theorem 3.10.5.

The second assertion we prove in two steps; the first step is the inclusion
A, pc(A,,0 pO,AO‘ o). Take aed,, (a#0). Then there is a decomposition
a=) u, (in X(A4)) such that u eA(A) and (3,27"J(2%u,; A)")P<Cllal,,.
Put (5>0 O0<Rez«)

f@)=exp(dz—n)*)), £,
where
FD=u, 20702, D) al 5, VYT
We obtain
lexp(— (it —n* || f (D)l 5, , S(LA270T(2", £(iD); A))re < Cllalz, .

Similarly, we have
exp(—d(1 +it—m?)|| fL+in)l5, , <Clalz,,

Now f eJ(Ago po’Aan ») and f(m)=a. Thus the inclusion follows.
Conversely, take ae(d,,, - Ay, o Let feF (4, - Ay, ») With f(n)=a,
and put

g, (z) =20 "D @=80v+1) £y

Clearly, g,e # (4 ) and g,(n)=a. The Cauchy integral formula (in Z(4))

6o, po? 01 pi

a=[Pyn, 1)gfiv)dr + [ P(n, D)g,(1 +ir)d7
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gives
27YK(2Y a; A)< 270 @m0 m (P (. 1) K(2Y, f (it); A)dt
FRTOHR LA [P g, K (2, [ (1+in); A)de
SC([Pofn, 127K (2", £ (iv); A)dr)' "
(JPin, D27 K(2, f (1 +ix); A)da),

if y is chosen appropriately. Using the inequalities of Holder and Minkowski,
this estimate gives

lalle,, <C([Poln, DI £ ()15, , do)f* ~ire
(Pl fA+inl, | doP<C] [,

which yields the required inequality. 0

4.8. Exercises

1. (Calderén [2]). Assume that 4 is a compatible Banach couple and that
Ao and A4, are Banach algebras with the same multiplication in 4(4). Prove that
A(A) is a subalgebra of 4, and A, and that A, may be made into an algebra with

lab 3, < llal 20,11 b1l 7,

for a,bedy,.
Hint: Apply Theorem 4.5.1.

2. Prove that A is reflexive when both 4, and A4, are reflexive.

‘3. (Krein-Petunin [1]). Assume that T: A4,— B, is linear with norm M, i=0,1,

A and B being compatible Banach couples. Show that if A=Ay, and B’ < Bj,
then T: A—B with norm at most M} M¢.

Hint: Consider the function {Tf{z2), g(z)>.

4. (Stafney [1]). Prove that if A(A) is dense in both 4, and A, and if A=A,
for some 8 (0<8< 1) then 4,=A,. (Cf. Chapter 3, Exercise 21.)

5. Prove first inclusion of Theorem 4.7.1 directly, i.e. without recourse to
Theorem 3.9.1.
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49. Notes and Comment

The complex interpolation method is based on the main idea in Thorin’s proof of
Riesz's interpolation theorem (cf. Section 1.1). It was introduced in about 1960
by A.P. Calderon [1] and J.L. Lions [2]. Also, S.G. Krein [1] (see Krein and
Yu.L Petunin [1]) has considered “an analytic scale of Banach spaces’, which
yields the same spaces as the complex method. M. Schechter [1] has made a
generalization of the complex method using certain distributions T instead of J,
as in this chapter. These ideas were also partly considered by Lions [2].

The real methods in Chapter 3 are readily extended to the quasi-normed case
for the complex methods, no corresponding extension has been made as far as we
know. For results in this direction (mainly L, 0<p<1) see Postylnik [1] and
Riviére [1]. The main point seems to be the question of a maximum principle.
(Cf. Peetre [28].) Also, to the reai method there is a discrete (equivalent) counter-
part, but we do not know of any such counterpart to the complex method.

4.9.1.—4.9.6. The theorems and the proofs of the first six sections are, except for
superficial changes, taken over from Calderdén [2]. Moreover, Calderén’s paper
contains additional material which is not included here. Applications, however,
are given in the next two chapters. Of the results not included, we want to mention
this: “/Tm, 0<8<1, isreflexive if (at least) one of Ay and A, is reflexive’.

Let us also point out that several of the exercises in Chapter 1 have counterparts
for the abstract method, notably 1.6.11.

4.9.7. The first results connecting the real and the complex method were given by
Lions-Peetre [1]. The second part of the proof of Theorem 4.7.1 is based on an
idea in Peetre [28]. Note that Theorem 3.9.1 yields another proof of that inclusion
under a supplementary density assumption. Theorem 4.7.2 is, in its present form,
due to KaradZov [1] and to Bergh.

In general, the real K, -method and the complex Cg-method yield different
results. (Cf. Chapter 6.) Moreover, neither of the indices 1 and o in Theorem
4.7.1 can be replaced with a g, 1 <g < co. (See Chapter 6, Exercise 23.)

Imposing a restriction on the spaces A, and A4,, Peetre [21] was able to
demonstrate the inclusion

A,,c Ay (0<0<1),

where p is connected with 6 and with the conditions on the spaces 4, and A4,.



Chapter 5

Interpolation of L,-Spaces

We investigate the real and complex interpolation of L -spaces and Lorentz
spaces over a measure space. In particular, we prove a generalized version of
the Marcinkiewicz theorem (the Calderon-Marcinkiewicz theorem). We also
investigate the real and the complex interpolation spaces between L ,-spaces
with different measures, thus extending a theorem by Stein and Weiss. In Sec-
tion 6, we consider the interpolation of vector-valued L,-spaces of sequences,
thus preparing for the interpolation of Besov spaces in the next chapter.

5.1. Interpolation of L,-Spaces: the Complex Method

Here we shall use the idea in the proof of the Riesz-Thorin theorem to prove
the following result.

5.1.1. Theorem. Assume that p,=1, p,; =1 and 0<6<1. Then

(L,o» Ly yoy=L, (equal norms),
if

1 1-6 90

—_ = +_ R

p Po D

Proof': It is sufficient to prove that
lalg=lale, L, ym=lalL,

for all bounded functions a with compact support. Put
f(2)=exp(ez® —e0)|a(x)|""a(x)/lalx)|,

where 1/p(z)=(1—z)/po+2z/p,. Assuming that |af, =1 we have fe# and
[ fl#<exp(e). Since f(#)=a we conclude |a],<exp(e), whence fafim<ial.,.
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The converse inequality follows from the relation
lall,,=sup{l<a,b>: |bll,, =1, b bounded with compact support}.
In fact, put
g(z)=exp(ez® —e0%) [b(x)I” " @b(x)/Ib(x)],

where b is as above and 1/p'(z)=(1—2)/p,+z/p,. Writing F(z)=<{f(2), g(z)>,
we then have [F(it)| <exp(e), |F(1+it)|<exp(2e) provided that |all,=1. Thus,
by the three line theorem, it follows that [{a, b>|<|F(f)|<exp(2¢). This implies
lali,, <lalg. O

Since we know that the complex interpolation method is an exact inter-
polation functor of exponent 6, we will get the Riesz-Thorin interpolation theo-
rem as an immediate corollary of Theorem 5.1.1.

It is possible to extend the previous theorem to vector-valued L ,-spaces.
Let 4 be a Banach space and consider the space L (A4)=L(U,du;A) of all
strongly measurable functions f such that

Sl F)Edpx) < oo,

where 1<p<co. We shall denote by L _(4)=L_(U,du; A) the completion in
the sup-norm of all functions

&) ) =aadp(x),  a€A,

where the sum is finite and y;, is the characteristic function of the measurable
disjoint sets E,. Functions of the form (3) will be called simple functions if in
addition p(E,)<co. The completion in L _(A4) of the simple functions is denoted
by L%(A4). Note that if 4 is the space of complex numbers then L_(A4) is the
space of essentially bounded functions.

5.1.2. Theorem. Assume that A, and A are Banach spaces and that 1<p,< o,
1<p, <0, 0<b<1. Then

(Lpo(Ao), Ly (Ao =L (Ao, Ay (equal norms),
where 1/p=(1—0)/p,+0/p,. If 1<p,<c0 we also have
(LpO(AO)’ L(o)o(A 1))[9] = Lp((AO’ A1)[e]) »
with 1/p=(11—-8)/p,.
Proof: Let S denote the space of simple functions with values in A(4). S is dense
in L,(A¢g)nL,(4,), and thus also in (L,(4), L, (A4,)e and in L (Ay), by

Theorem 4.2.2. From now on we consider only functions in S; this is clearly
enough.
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First we prove the inequality

all @y o Lo, ca0or < N4 L paran -

Since a€$S, there is a function g¢g(-,x)eZ#(A4), such that lg(, gz <
(1 +&)lla(x)ll 5, (xeU; e>0), and with g(6, x)=a(x) (xeU).
Put

[z x)=g(z, x)(|a(x)]| 1/ 10l . a6)7 /70~ H7VET.

For this function f, we have

[l f(it, ')”L,,O(Ao) = (yv I fGe, )5 dp(x))""Pe<(1 +¢) lalL, e

where some elementary calculations have been left to the reader. Similarly,
| f(1+it, ')“LPI(A,)<(1 +¢) Ha”L,,(Z[,,]) >

and the desired inequality follows, since ¢>0 was arbitrary.
The other inequality follows from Lemma 4.32 and Holder's inequality
(po/P(1 =) >1; p,/p6>1). In fact, if f(-, x)e F(A) and f(6, x)=a(x) (xe U} then
lallz aep = Ju @) 55, dn)* 7
Sl =07 2, 1 £, ) 4, Pol6, 7)d7)' ~°
(O [2 L I f A +it, X 4, Py(O, 1) d0)’}P dp)tle
<sup, 1S GOIL, $aysupal S A +iDE,

SN pyor Lo (41 -

This gives the conclusion.
The statement about L2 is proved in precisely the same manner. [

5.2. Interpolation of L,-Spaces: the Real Method

In this section, L, will denote the space L (U,du; A)=L(du; A), consisting of
all strongly u-measurable functions with values in the Banach space A which
satisfy

Hf12 = [yl fERdu< oo

To simplify formulas etc., all statements and their proofs are given for the case
A=C. However, it is not hard to see that the results hold also in the general
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case. In this and the next section, we consider interpolation only of L (du; A)-
spaces with A and du fixed.

We shall identify the space (L, L, ), , with a Lorentz space, employing an
explicit formula for K(t, f; L,, L) and the reiteration theorem.

The reader is asked to recall the definitions of the decreasing rearrangement
f* of a function f, and of the Lorentz space L, ,, as they are given in Section 1.3.
Note that these definitions have a sense also in the vector-valued case.

5.2.1. Theorem. Suppose that feL,+L,, 0<p<co. Then
(1 K(t, f5 Ly, L) ~(J5 (f*(s)yds)HP.

If p=1 there is equality in (1).
Moreover, with 0<p,<p,;< w0,

(2) (Lpgs Lp)og=L,,, (equivalent norms)

if po<q<oo, 1/p=(1-0)/po+6/p; (0<0<1). In particular, (L,,L,)s ,=L,.

po’

Proof : First we prove “<” of (1). Take

JR=f*O) NS i S XN>*()

0 otherwise

Solx)= {

and fi=f—f, Let E={x|fo(x)#0}. Then u(E)<t?, and we have, since f*(s)
is constant on [u(E), t*],
K(t.f; Ly, L)< fol p 11 /1l
=(Je(f G = f*E)yPdp)''?+ 1 f*(1t?)
=(J8B(f*s)— f*a)rds) ' P+ (J5 (f*(E)Pds)'?
=(J5 (f*(s) = f*(eP)Pds) P +(J5 (f* Py ds)H?
S5 (fXs)rds)tr,
where C=1 if p=1. For the converse inequality, assume that f=f,+f;,
foeL,, fieL,. Using the inequality m(oc,+ay, f)<mlo,,fo)+mloy,fi), we
obtain, by elementary calculations,
SO f (1 —¢)s)+ fHes), O<ex<d.
Thus
(J6 (S X)) P < C{([5 (f3((1 —e)s)Pds) /P +([5 (S H(es))Pds)! 7}
SC{J (31 —2)s)Pds)' P+t f1(0)}
=C{(1—&)" Pl fol ,+ 1 fill o} -
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Taking the infimum and letting ¢—0, we get (1). Note that C=1 if p>1.
In order to prove (2), we first establish (2) for p, =c0 and then we apply the
reiteration theorem 3.5.3. Thus let p, =oc0. By Formula (1), we have

1 Ny Laro,e=(§8 @KL f5 Ly L) dt/)"
~(J§ (™07 f5o (S X(s)Podsy'ro de/r)' e
:(jg’(t—ﬂpowoy(l) (f*(stPo)Pos ds/s)i/Po di/r)pola .
Then, by the Minkowski inequality (g/p,>1), we get

1S Wity Lo, SC Jo (770 [5 10 =09(f ¥(stPo)i di/yrods/s < C | f ., , »

since 1/p=(1—0)/p,. Conversely, because f* is non-negative and decreasing,
it follows that

If ”(Ll’o’ Lo)e,q = C(fgo(t—Bpotpu(f*(tpo))po)q/po dt/t)”" =C|f ”LM .

Thus, (2) is established for p, =o0. From this and the reiteration theorem 3.5.3,
we infer that (p; <o)

(Lpo) Lp,)e,q = ((L,, Loo)Oo,po’ (Ln Lm)el,p,)o,q

=(L,, L), ,=L ( equivalent norms),

P4

where 0 <r<p,, and 6,, 8,,n have their prescribed values. 0

Note that there is another proof of the last statement of Theorem 5.2.1 in
the case p, <o, using the power theorem. In fact, we have the following result.

5.2.2. Theorem. If O<p,<p,<co and p=(1—n)pe+np,, 0<n<l then

(Lp)®s (Lp )P )y = (L) .

The quasi-norm on (L) is a constant multiplied by the quasi-norm on
((LPO)PO, (Lp‘)pl)rp,l .

Using Theorem 5.2.2 combined with the power theorem 3.11.6 we conclude
that L,=(L,,L,),, with equivalence of quasi-norms.

Proof: We may assume that p,<p,. Let us write

L{t, f)=K(t, f; (L, " (L, )" .
Then
L(t,f)=inf,_,, , ;, o folP° + 2] £1(0)P") dp

= jU inff(x) =f0(x)+f1(x)(|f0(x)lp0 +e fi(x)NP)dp .
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But
inf,_ 04, (yolPo+ly P =yl F(tlylPr 70

where F(s)=inf, ,  _(lyol?+s|y,[f')~min(1,s). Then

L(t, f) = Jy| f QO F(e] f ()P ).
It follows that
1S lwpyro. wp i, = §& "L, f)dt/t
= [yl fOIP [S T F (] f(0IP ~Po)(dt/t)dp .
Writing
co = [St"F(t)ydt/t
we obtain

“f”((L,,O)"O,(Lp‘)”l),,,x =‘30§U,f(x)|pd#=co”f”fp- a

Using Theorem 5.2.1 and 5.2.2, we can now prove the following version of
the Riesz-Thorin interpolation theorem.

5.2.3. Theorem. Write 1/p=(1—-8)/po+0/p,, 1/qg=(1-6)/q,+6/q, where
0<0<1 and O<p;, q;<0, i=0,1. Assume that p<q. Then

T:L,(U,dy)—L,(V,dv),
T:L,(U,dw—L, (V,dv),
implies that

T: LU, dw)— LV, dv).

If M, is the quasi-norm of T:L,—L, andif M is the quasi-norm of T:L,~L,,
then

M<CM{ M.
If pi=¢;<co (i=0,1) then C=1.

Note that the theorem holds in the quasi-normed case, but that we have
the restriction p<gq.

Proof : Assume first that p,#gq, for some ie{0,1}. By Theorem 5.2.1, Theorem
3.4.1 and the interpolation property, we have

i Tf“q<CH Tf“(qu,qu)e,qSCM(l)_er Hf”(L,,O,LPl)e,q
<CMy~°M; ”f“(LPO,LPI)Q,,,SCM%)_OM(; (WA

where C depends on 6.
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If p,=q,,i=0,1, we use Theorem 3.11.8 to obtain
IS Ly, e, ?0m s SMG TP M [ f |70,y P10ms -
With (1-#)po=(1—0)p and yp,=0p we obtain, by Theorem 5.2.1,
o ITAI5<(MG™ MY e, f115
which gives the result. [

We conclude this section with a proof of the following complement to the
reiteration theorem. (This is an extension of Theorem 3.5.4.)

5.2.4. Theorem. Assume that A, and A, are Banach spaces. Then for 0<qq,< o0,
0<g, <0 we have

(’ZO,qo’ gﬂ,qx)mq = ’ao.q

where 0<n<1 and

1 1-
t_t=n_n

q 90 9

Proof: Using Theorem 5.2.1 we see that
3 (A%, 1%9), =41,

(The case g,=4g,>1 is a consequence of Theorem 3.4.1.) Write X jzflg,qj.
We shall prove that

4 lalz, .~ WK, a5 D)l 20,90, 10.01),. -

Clearly this implies the result, since (3) implies
laliz, ,~ 1(K(2", a; Ayl 0.0~ lall 5, , -

(See Lemma 3.1.3.)
In order to prove (4) we assume first that ae X me L€t a=) u, with

102 u,; XDl n s <Claly, , -
Then _
(K2, a; D)l ze. 0, 18:91), o

SIL K, 1, D)yl g0.00, 20,0,
< C(Z“(z— mJ2* (K2, u,; g))v; /19,«10, /10,41))q)1/q
=C(L,Q27*JQ2% u; X)W <Claly, , -
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Conversely, assume that (K(2“,a;Z))ve(l""m,/l""“)w,_ Choose, using the funda-
mental lemma 3.3.2, a=zvuv such that J(2%,u,; A)<CK(2", a; A). We shall
prove

5 K(t,a; X)<CK(t,(J(2", u,; A),; A%, 2%9) .

Obviously, this implies the desired inequality:

lallz, , < CIK2", a; A)),ll 6.0, 10.91),,, -

To prove (5), let J(2",u,; A)=aq, +0;,, 0;,€A™% Put a,=Y ,(J(2",u,; A) ™ a;u,.
Then ay,+a,=a and

[, < TR, (2, A) ™ ot D)
< C(Zv(zh v |aiv|)‘h)1/qi = C ”(aiv)v“)ﬁ,q‘. .

This clearly proves (5). O

5.3. Interpolation of Lorentz Spaces

In this section we shall characterize the space (L pogo» Lpigi)s,q» @and then we shall
prove a generalization of Marcinkiewicz’s interpolation theorem (Theorem 1.3.1).

5.3.1. Theorem. Suppose that pg, 1,409,491, and q are positive, possibly infinite,
numbers and write 1/p=(1-—n)/po+n/p, where 0<n<1. Then, if py#p,,

L

M (Lpoao> LpigIna=Lpg
This formula is also true in the case py=p,=p, provided that 1/q=(1—n)/q,+1/4,.
Proof: In the case p,#p, we use Theorem 5.2.1 and the reiteration theorem
3.5.3. With O<r<min(py, p,) and 1/p,=(1-8)/r, 6=(1—3)8,+n0, we obtain,
noting that 1/p={1-6)/r,

(LPOQO’ LPI‘II)'M =((Lr’ Loo)@o,qo’ (Lr’ Loo)ﬂhm)'l.q:(Lr’ Loo)e,q =qu ’

In the case p,=p,=p, we use Theorem 3.5.5 instead. [

As a consequence of Theorem 5.3.1 we have the following interpolation theo-
rem, which contains the Marcinkiewicz interpolation theorem.

5.3.2. Theorem (The general Marcinkiewicz interpolation theorem). Suppose that

T:L,, (U, dw—L,  (V,dv),
T:L,,(U,dw—L,  (V,dv),
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where po#p, and q,#4q,. Put 1/p=(1-0)/p,+0/p, and 1/q=(1-0)/q,+6/q,.
Then

4) T:L,(U,dw—~L,(V,dv), 0<r<co.
In particular, we have

5 T: LU, du)—~LyV,dv),

provided that p<gq.

Note that the theorem holds also in the vector-valued case, i.e. when all
spaces are spaces of functions with values in a fixed Banach space.

Proof : The conclusion (4) follows at once from Theorem 5.3.1 and (5) then follows
from the inclusion L,,=L,. 10

The most general consequence of Theorem 5.3.1 is that if

T:L,,—L

qiSi?

i=0,1
then
T:L,—L,

provided that 1/p=(1—-6)/po+0/p1, 1/a=(1-0)/90+0/4;, po#Pp1> do#4q, and
that 0<r<s< . A particular case is the following result.

5.3.4. Theorem (Calderdn’s interpolation theorem). Suppose that (p>0)

T: LpipﬂLqim, i=0,1.
Then
T:L,—L,

if r<s and if p,, q;, p and q satisfy the assumptions of Theorem 5.3.2.

54. Interpolation of L,-Spaces with Change of Measure: p, = p,

In the preceding sections we considered interpolation of L ,-spaces with a fixed
measure y and varying values of p. Here we shall let u vary but keep p fixed.
In the next section we shall let both u and p vary.

We shall characterize the space (L,(duo), L(diy)),,, Where p, and p, are
two positive measures. We may assume that u, and u, are absolutely continuous
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with respect to a third measure u. Thus we suppose that

dpo(x)=wy(x)dpu(x),
dpy(x)=w(x)du(x) .

Let us write

Lw)=L,(U,wdy).

5.4.1. Theorem (The interpolation theorem of Stein-Weiss). Assume that 0<p<co
and that 0<6<1. Put

w(x)=wo " (x)wilx).
Then
(Lp(WO)’ Lp(w Ve, = Lp(W)

{with equivalent norms). Moreover, if

T: L (U, wodi)— LV, Wodv),
T:L(U,wdp)— LV, W,dv)

with quasi-norms My and M | respectively, then
T: L (U, wdp)— L (V, Wdv)
with quasi-norm
M<M{ M.
Here w(x)=w} ™ %x)wi(x).
Proof: We shall consider the functional
Kt f) =106y 1+ (1 follE oy T 1 i) (0<p<c0).
Let us write
IS 6.0 p=Po,o(K,(t, /).
Then we have (Exercise 1)

Hf“e,q;p~ “f“e,q .

Moreover, since obviously

ty) K6, T)S MoK (M t/M,, f),
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we have

“ Tf“e,q;ng(l)_eM? Hf“o,q:p .

Therefore the theorem will follow if we can prove that
@ IS e, ps p=C S Ny -
In order to prove (2), we shall prove that

G) Kt )= fLpom >

where
w(x) = wo(x) F(£7 w, (x)/wo(x)) .

Here F is defined as in the proof of Theorem 5.2.2, i.e.

F(s)=inf,,,, _(1yol”+sy/").
Indeed, if (3) holds, we conclude that
1S 6,5 p=(§5 2% fu L L )P wo(X) F(ePw 1 (x)/wo(x)) dpelix) /1) /P
=(Jul fONP & 17 Pwo(X) F(tPw (x)/wo(x)) dp(x) de /1) 7P .
Now the last integral is equal to ¢?wj~®w? where
c=([§ s~ F(s")ds/s)""?.

Note that ¢< co, since F(s)~min(1,s). This gives (2).
The proof of (3) is quite similar to the proof of Theorem 5.2.2. In fact,

Kt N=(nf,_ . 1 (o0l folPwo+ P f 1w, ) du)'/?
= (Sv(inff=fo+fl(lfo|pwo + 22| f[Pw,)du)'P .

Since inf, ., -,

(Iyolwo + 271y, [Pwy) = [yPwoF(tPw,/w), we obtain (3). [0

The rest of this section is devoted to the problem of finding all interpolation
functions in the sense of our next definition.

5.4.2. Definition. The positive function h is called an interpolation function of
power p if

T: (Ly{wo), L(w ))—(L,(Wo), L,(#,))
with quasi-norms (M, M ,), implies

[E Lp(woh(w 1/Wo))_’Lp(Woh(W1/‘z’o))
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with quasi-norm
M<Cmax(M,, M,).

Clearly h(t)=1’ is an interpolation function of power p. This follows from
the previous theorem.

Let us assume that h is an interpolation function of power p. Choose U ={0,1}
and let u be the measure 6,4+ 8, (carrying the mass 1 at each of the two points).
Put wy(0)=wy(1)=1, w,(0)=s, w,(1)=t and let T be defined by

(Ta)(0)=0, (Ta)(1)=a(0).
In this case

M,=1, M =(t/9)'", M=(ht)/h(s)""
and thus it follows that
4 h(t)< Cmax(1, t/s) h(s) .

We call a function h quasi-concave if it is equivalent to a concave function,
ie. h(t)~k(r) for some concave function k.

5.4.3. Lemma. Let h be a positive function. Then the following three conditions
are equivalent:
(i) h is quasi-concave;
(ii) h(t)~o+ Pr+ [@ min(t, )dmy(t), where a>=0, B0, and m, is an increasing
function bounded from above and with lim,_ tmy(t)=0;
(iii} h satisfies (4).

Proof: We prove the following implications: (i)=>(ii) = (iii) = (i).
Now (ii)=-(iii) is obvious, since the right hand side in (ii) clearly is concave.
To prove (i)=>(ii), we assume that h(t)~k(t) with k concave. We shall show
that we may write

k(t)=o+ Bt + [ min(z, t)dm(7),
with a suitable choice of o, B, m,. Take a=Ilim,_ k(t) and f=Iim,_,k(t)/t. Then

the function k(t)—a—pft is obviously also positive and concave. Moreover, it
follows by partial integration that

K(t)—a— it = o0 (1)~ B)dr =1k’ (1) — )~y 1d(K'(x)
= [ min(r, f)d(~ k'),

since k' is non-negative and decreasing, 0<t(k'(t)— B)<k(t)—a—pt—0 as t—0.
Taking m(t)= —k'(t), we have proved (i)= (ii).
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For the remaining implication (iii)= (i), we assume that h satisfies (4). Define
the function k by

k(t)_sup{Zt 1/1 h(t)|2l 1'1_1 Zl l'lt _t )' 20}

Clearly, k is concave and h(t)<k(t). Conversely, by (4), we obtain

Y i Ah(t)<CY A;max(l, 1,/1) h(t)
SCOL A+t 1Y At h(t) < Ch(r).
Thus h(r)~k(t), with k concave, i.e. h is quasi-concave. [
5.4.4. Theorem. A positive function h is an interpolation function of power p
if and only if it is quasi-concave. In particular, if h is an interpolation function of

power p for some p, the same is true for all p.

Proof : 1t remains to prove the sufficiency. Let us introduce the function @,
defined by

o= (d i o p(0)"+ flim. o <(p(r)) +§5 T Pty dmy(t™ p)>1/" )

The assumption is that h is equivalent to the function given in Lemma 5.4.3.
Note that

®) <Y = Q)< PWY),

(6) D(p(st)) < max(l,s) Pe(7)) .

We shall now prove that

(7) ¢(Kp(‘c7 f: Lp(wo)’ Lp(wl )))NHf”Lp(WOh(WI/WO)) .

This is casily done if we use Formula (3) (note that F(s)~min(1,s)) and Lemma
5.4.3. In fact, we have

O(K (1, )~ B((J| [ Pwomin(1, 2w, we)dp) )
<yu|fspwo(a+ﬂ o ”mln<1 o )dmo(‘r P))d,u)llp
~(Julf1IPwoh(w /wo)du)'® .

Next, we shall prove that

®) P(K (1, Tf; L (W), L (%)) S Cmax(Mo, M) B(K (7, f; L (wo), L(wy))-
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This follows at once from (5), (6) and (1), since

DK (T, T NS MoPK (M t/Mg, ) <Momax(1, M, /M) DKz, ).
From (7) and (8) we conclude that

[ TSNl pwoniiy oy S Cmax(Mo, M) || f 12 woh(ws /wop -

This completes the proof. [

5.5. Interpolation of L,-Spaces with Change of Measure: p,+ p,
In this section, we shall investigate the interpolation space (L, (w,), L, (W1)) ,»
where p,#p,. Here is our result:

5.5.1. Theorem. Assume that 0<py<oo and 0<p,<co. Then we have

(LpWo), Ly (W1))g,,=L(w), 0<6<1,

where

Ww = Wi =P polps
1/p=(1—-06)/po+6/p, -
Proof: Using the power theorem 3.11.6, we see that
(L poWoh L (W1, )7 = (L o), (L, (9))") 1 -
where #=0p/p,. The norm of f in the space on the right hand side is
foeming,_ . g follfolPowo +t1.£117w, ) dpe dife
= [o U tinf_ p 1 (folPowo + el f 117w ) dt/t} du.

Writing F(s)=inf

o+ 31 =1UYolP?+5s]y4]P*), we see that the last integral is equal to

fUIflpowo{j?)ot_"F(tWJflm_pO/Wo)dt/t} du
— fsFE)dss - fol £10 7770 wh Ml d.

Since 1—-n=p(1—-0)/p, and (1 —n)po+np,=p. and since F(s)~min(1,s), we
obtain the result. 0

As a corollary we get the following extension of the interpolation theorem
of Stein-Weiss.
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5.5.2. Corollary. Assume that 0 <p,<oco, 0<p,<co and that

T: LPO( U’ Wodﬂ)—’qu( V9 WOdv) ®
T: L, (U, widp)— L, (V, #,dv)

with quasi-norms M, and M respectively. Then

T: L (U, wdp)— LV, Wdv)
where
1 1-6 1 1-6 E

0
S=Ch—, S=——4—, p<g
p Do D1 q 4o q:

and

szg(l —8)/po er/px ,
W:W‘(I)U‘e)/%wgo/‘“ |
Using the complex method, we can drop the restriction p<q and we get
sharper inequalities for the operator norms. However, we have to exclude the
case O0<p,,p, <l

5.5.3. Theorem. Assume that 1<pgy,p, <. Then we have, with equal norms,

(LpoWo), L, (W) =L,w) (0<b<1),
where

w=wh1 ~WPowtoirs 4 /p=(1—0)/po+0/p; .

Proof : For a given feZ (L, (w,), L, (w;)), we put
(20 =wo(x)" ~Pow (" £ (2, x).

The mapping f—f is obviously an isometric isomorphism between
(Lpo(wo), L, (wy)) and F (L, L, ). Now the argument in the proof of Theorem
5.1.1 goes through with evident modifications. [

5.5.4. Corollary (Stein-Weiss). Assume that 1<p,,p,, 40,4, <0, and that

T:L,(U,wodw)— L, (V, Wodv),
T:L,(U,widw)—L, (V,Wdvy,

with norms M, and M, respectively. Then

T: L (U, wdp)— L,(V, wdv)
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with norm M, satisfying

1—6x0
M<Mg M7,
where

1/p=(1-0)/po+0/p,. 1/q=(1-0)/q,+6/q,,

szg(l —8)/po W1119/p1 , W=V~V‘(1)(l —0)/qowt{0/qx i

56. Interpolation of L,-Spaces of Vector-Valued Sequences

It is possible to extend many of the previous results to vector valued L -spaces.
(Cf. Theorem 5.1.2.) However, these extensions will be complicated by questions
of measurability. In order to avoid these difficulties, we shall consider L ,-spaces
of sequences only.

Let A be a Banach space and let s be an arbitrary real number and g a positive
real number. Then we denote by i;(A) the space of all sequences ()2, a,€4
such that

@iy =(2 2 2" la,] )9

is finite. Clearly, ls( ) is a quasi-normed space. Note that if 4 =R (= space of
real numbers), then l"’(]R) A% We also introduce the space [(A) of all se-
quences (a,)y, a,€4 such that

Ha)lige =02 la,fl ) < 0.

We shall also work with the space &3(A) of all (a,)°,, such that 2*%|a,] ,—0 as
v— +oo and the space cj(4) of all (a,)7 such that 2*|a,j ,—~0 as v—oo. The
norms on ¢y(A4) and ci(A) are the norms of l'soo(A) and I (A) respectively.

Let N denote the set of non-negative integers and Z the set of all integers.
Let du be the measure Y ,,2"6, (5, = pointmass 1 at x=v) and dj the measure
Y',2*5,. Then

A =Ly(N, du; A),  cp(A)=Lg(N, dy; 4),

BUA=L(Z. dji; 4),  &(A)=LYZ dp; 4).
Using Theorem 5.1.2, we therefore obtain

(l;{)qo(A ), l;/,q‘(A 1))[0] = l;/q((Ao, A 1)[0]) s
(l;f)qo(Ao)a Co(A 1))[0] = l;/q((A09 A 1)[0]) ,

and similarly for the dotted spaces i,j and ¢&. Here 1<gy<c0, 1<q, <00 and
1/g=01-06)/q0+0/q;.
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We shall now prove analogous results for the real interpolation method.
We start with the case A,=A4,=A.

5.6.1. Theorem. Assume that 0<q,< 0, 0<q,<o0, and that s,#s,. Then we
have, for all g< oo,

1) (I3e(A), L (A)), o =15(4) ,

where
s=(1—0)sq+0s;.

If so=s,=s we have
@ (3o(A), 13,(A))g g = 1(A)
provided that

1 1-6 0

q 9 q:

The same statements hold for the dotted spaces ls In the case qo<q,=c0, we
can replace I3, or ls by ¢} and &, respectively.

Proof: We first consider the case sy#s,, go=¢,=r<gq. Let a denote the se-
quence (a,). Then

K(t, a; [(A), BN A)= (X, inf, g0 44,, (270 N ay0 )" +(2 [lay, | D)
~ (2, (min(2, 12" la, ] )" .

Thus it follows that
min(2#%°, 12#) |a, || , < CK (¢, a; [}%(A), [[(A)) .
With t=2#% J=s5,—s,, we now obtain

la,lla<C27#0K (2, a; Bo(A), [;(A4)),

and hence
2% la,] NS C(Y, (270K (24, a; B(A), B(A))F).

Just as in the proof of the reiteration theorem, we now obtain

(3) H HIS(A)\C” “(lﬁO(A),lfl(A))g,q s
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provided that s=(1—8)s,+0s,;. In order to prove the converse inequality, we
note that if n=s5—s, then

<CIK 2%, a; Bo(A), B (A g
<CI(X,(min(1,277)20* @5 flg, 1)) i

H a“ (I70(A4), IF1(A))e, q

With p=g/r>1, we obtain, by Minkowsk{’s inequality,

1l gzogar e, < C(EHmin(1, 274277 " a .

This gives the converse of (3).

In order to prove (1), we now use the reiteration theorem, writing
Lo =7 160,40 @and It =(5°, I7%)y, 4., With 6, <min(sg,s;) <max(sy,s;) <o, and
s._(1 —0)0,+0,0,. Since then 0,#0,, we can apply the reiteration theorem,
which clearly gives (1).

Using Theorem 5.2.4, we also get (2), since then we have to take 6,=0,.

The last part of the theorem, concerning the spaces cy(A), follows from Theo-
rem 3.4.2. It is clear that the proof also works for the dotted spaces. 10

Using the idea from the first half of the proof of the previous theorem, we
prove the following result.

5.6.2. Theorem. Assume that 0<qo<oo and 0<q,<c0. Then
(3o(Ao), 51 (A 1), , = (Ao, A1) »

where s=(1—80)s,+0s,, 1/q=(1—-6)/q,+0/q,.

Proof : Clearly,

Lz, a)=K(t, a; (135(Ao)), (I51(A,))")

=Y inf, o osa (270 layol )+ 227 a4 )",
and thus

di,,,l(L(t, a))= Zv2”s°‘1° Sg"z"’K(tT‘s““ ~s040), a,; (Ao, (4,)1)dt/t
=2,2"a,| (A0)90, (A1), 1

By the power theorem the result now follows. [
Finally, we give a result for the complex method.

5.6.3. Theorem. We have, with equal norms,

(lso (Ao)> (A 1))[91 = l; (Z[o])
0<b8<1;sy,5,eR;1<qy,q,<0),
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where
1/q=(1-0)/q9,+0/q; ,
s={1—0)so+0s, .

Proof: Let feF(32(A,), [5}(A,)), where f(z)=(fi{z)ilo- Then we define
f(Z) (fk(z))k by

fk(Z) — Dso(1—2)k )s1zk fk(z) ,

imitating the proof of Theorem 5.5.3. The mapping f— f is an isometric iso-
morphism between F([;2(4,), [51(4,)) and F(l,(4o), 1, (4,)). This implies the

> g1
result in view of Theorem 5.1.2. [

5.7. Exercises

1. Consider a linear operator T, defined for complex-valued measurable func-
tions on, e.g., the real axis, and with values in a Banach function space X.
A Banach function space is a Banach space of complex-valued measurable
functions with the following properties:
0 [fI<lg)l ae, geX = feX, [flx<lglx;
(11) 0<fn—1<fn7 fn_)f a.c., fGX = Supn“fn”X= ”f”X'
Prove that 0<p<1)
T:L,—»X
iff
ITxEllx <CEN'?,

where y is the characteristic function of the measurable set E.
Hint: Consider first the simple functions.
2. (Holmstedt [1]). Prove that if the measure p is non-atomic and 0<p,<p,; <o
then
K(t, f5 Lpgs Lp )~ (J5 (f ¥(s))Pods) o+ (J2( f *(s))P ds) 1P

where 1/a=1/p,—1/p,, by straight-forward estimates.
Hint: Choose a set E such that u(E)=¢* and |f(x)|= f*(t*) for xeE, and put

f(x) xeE
folx)= { *¢E.
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3. (Holmstedt [1]). Prove that if O<py,<p,<co then (1/a=1/po—1/p,)
Kt f5 Liyger Lipsg,) ~(J5 (5170 f2(5)ods) 00 4 (Jiz(sH17 £ ¥(s))sds) e

In particular this gives a formula for (¢,=p;) K(¢, f; L, L,)).
Hint: Use 3.6.1, 5.2.1 and Minkowski’s inequality.

4. (O'Neil [1]). Consider the convolution operator
Tf(x)=[r-k(x =) f(y)dy .
Assume that keL¥=L,,. Then
T:L,— Lq s
where 1/g=1/p—1/p’ and 1<p<yp’
Hint: Cf. the proof of Young’s inequality 1.2.2, and use Theorem 5.3.1.
5. Define the potential operator P, by
P f()=[pfx=y)yI*"dy (0<a<n).
Show that
P,:L,-L,
if 1/g=1/p—a/n and 1<p<njo.
Hint: Use the previous exercise. (Cf. Peetre [29] for a detailed account.)

6. (Goulaouic [1]). Consider the positive real axis and the usual Lebesgue
measure. Put (0< <o)

wo(x)=1
w(x)=exp(x*)

and

B = exp((logn)?®) if n>1
=10 it n<t.

Show that if

T:Lw)—Lw) (i=0,1)
then
T: L (w)—L,w),
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where
w(x)=exp(xf).

Hint: Show that h is concave and apply Theorem 5.5.4.

7. Consider the positive real axis and the usual Lebesgue measure. Put 4,=L,,
A,=L,, X;=4,,, (i=0,1;0<6,<0,<1). Show that if

x if O<x<xi

f(x):{o it x>1

then
10z, 0f 7, ~ 0t —n)~1e,

where 0=(1—-n)0,+48,, O<y<1, 0<g<co. Moreover, if

6, x4 1 if 0<x<1
Oox% 1 if x>1

f(x)={
show that
Iz, Nz ~n ™ ao( —y)~ tar

Hint: Employ Theorem 3.6.1, 5.2.1 and Exercise 3 to estimate K(t, f).

8. As an application of Exercise 16, Chapter 3, we suggest the following: Let
Q be the semi-group of all non-negative decreasing sequences and consider Q
as a sub-semi-group of /.

(@) Prove that (I,nQ, I, Q) ,=1,nQ if 1/p=1-86.
(b) Consider the operator T given by
(T(a,)?)()=5UP, <, <x | 2z 1@uCOSREL  (x20).
Prove that
T:1,-L_(0,n),
T:1,nQ—-L, (0,7).

(¢) Deduce that
(@)Fel,,nQ =7 a,cosnxeL,0,m),

1/p’=1—1/p, 1<p<oo. (This is a classical theorem by Hardy and Littlewood.
For more general results of this kind see Y. Sagher [2, 3].)

9. Prove that (L,)=L,, if 1<p<co,1<qg<o, and (using Exercise 17, Chap-
ter 3) that (L,))=L,, if 1<p<oo, 0<g<1. (Cf Haaker [1] and Peetre [26]
for 0<p<1. See also Sagher [1] and Cwikel [2].)



5.7. Exercises 127

10. Put
Als, )= jswo(x)swl(x)If(x)'pwo(x)dlh O<p<o,

and K(t, f)=KI(t, f; L (W), L,(w;)). Prove that (L, (w,), L(w,))y, is the space
of all measurable functions such that

(J8(° Als, f)/Pds/s) i< oo .
11. Prove t.hé'lt- (L (W), L(wy))y, is a retract of [(L,(w,)), where wy= wp Wl
(For the definition of retract see Exercise 18, Chapter 3.)

Hint: Exercise 10.

12. (Peetre [20]). Consider the couple (C° C?) as defined in 7.6. Show that the
mapping T defined by

Tfx)=fx)—f()

is an isometric (K-invariant) isomorphism between the couple (C° C!) and a
subcouple of the couple (I,(3), [ (Ix—y/™"). Cf 3.13.13.

Hint: Apply the formula for the K-functional and Exercise 3.13.1.

13. Assume that # is a non-negative function defined on the positive real axis.
Show that the function k, defined by

k(t)=5uP{Z?= 1 Aih(ti)lzliz 1, z)'itiz t, 4,20}

is the least concave majorant of h.

14. (Sedaev-Semenov [1]). Consider the couple (4, A,), where A,=A;=R3
(as sets) with norms

Hx”Ao:xT—*—x; s
%l g, =xF .

Here (x*)} is the decreasing rearrangement of (|x,|)} and x=(x,, x,, x5)eR3.
Show that

tx¥ O<t<1)
K(t,x) =< x¥+(t—1)x3 (1<1<2)

xX¥+x3 (t>2).
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Put x=(3,2,1) and y=(3,2,2). Evidently, K(t, x)=K(t, y) for all t>0. Let the
norm of A be defined by

Iz}l y=inf{max(|| Tllo, | Tll;)|z=Tx, Te L(A)} .
Verify that A is an exact interpolation space with respect to A4, but that

Ixla=1<lyll 4.
Hint: Show that y# Tx when max(||T],, | T|,)<1, Te L(A).

15. State and prove multilinear interpolation theorems for bounded linear
mappings from products of L -spaces to L,-spaces, using the real and the com-
plex method.

Hint: See the general theorems and the exercises in Chapter 3 and 4.

5.8. Notes and Comment

As we noted in Chapter 1, the study of interpolation of L -spaces, or, rather,
of operators between L -spaces, previews retrospectively the theorems of Riesz
and Marcinkiewicz. It is these latter theorems and some of their generalizations
which are the theme of this chapter—now, of course, seen in the light of the
complex and real methods.

Other methods have been introduced by Bennett [2]. His methods are
adapted to couples of rearrangement invariant Banach function spaces, and are
equivalent to the real method.

Interpolation of Orlicz spaces is the subject of Gustavsson-Peetre [1]. They
consider the problem of putting necessary and sufficient conditions on ¢ in
order that I? be an interpolation space with respect to the couple (L°, L*).
The corresponding problem for Orlicz classes is essentially solved in Peetre [18].
Bennett [1] has shown that (Llog™L, L), ,=L, (strict inclusion) if 1/p=1-0,
0<0<1.

Throughout this chapter we have identified spaces obtained from a given
L -couple by the complex and the real interpolation methods. There is, of course,
also a converse problem: Can “all” interpolation spaces with respect to a fixed
couple of L,-spaces be obtained by the complex/real interpolation methods? This
problem, for the couple (L,, L) (L., being the closure of the simple functions),
has been treated by Mitjagin [1], and, later, by Calderon [3]. They showed that
“all” interpolation spaces with respect to (L,, L ) are K-spaces in the following
sense: Assume that 4 is a rearrangement invariant Banach function space, which
is an exact interpolation space with respect to (L, L ). Then

Kt f;L,, L, )<K(t,g;L,L,) forall t>0, geA
=fed and |ff,<llgl,.
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The corresponding problem for the couple (L, L) has been explored by Cotlar
(personal communication) and Lorentz and Shimogaki [1] (see also Bergh [1]).
Recently, Sparr [2] has shown that all quasi-Banach function spaces which are
interpolation spaces with respect to the couple (L, (wo), L, (w;)), where 0<p,,
pi<co and [ fIf )= o 1f (x)w(x)|Pdx, are equivalent to a K-space (in the sense
above). Sparr’s results contain a result by Sedaev [1]: the case 1<p,=p,; <.
Sedaev-Semenov [1] exhibits an example of a couple and an interpolation space
with respect to that couple which is not a K-space (see Exercise 14). In other
words: given an arbitrary couple, the K-method does not necessarily exhaust
all interpolation spaces with respect to that couple. Moreover, returning to the
original problem, Lorentz and Shimogaki [1] have given necessary and suf-
ficient conditions for a Lorentz spaces A(¢p) to be an (exact) interpolation space
with respect to the Lorentz couple (A(@,), A(¢,)), where | f| A(q,):j(‘, F*)o(t)dr,
¢ being positive and decreasing. In fact, their conditions say that A(g) can be
obtained from (A(¢g), 4(¢,)) by the K-method, see Bergh [1]. Also, we remark
that Lorentz and Shimogaki admit even Lipschitz operators, not only linear
operators. (Cf. also 3.14 and 2.6, and especially the result of Cwikel concerning
the K-monotonicity of the couple (L, ., L,,4,)-)

5.8.1. Section 5.1 is essentially taken over from Calderon [2]. However, Calderon
studies interpolation of general Banach function lattices and then simultaneously
covers e.g. L,-, L - and Orlicz spaces L. This is done by introducing a space A:

A={f134>0,0<0<1, fie ;[ fil 4, <1 [fGISAfo)' 1 f1(01}

where A is a compatible couple of Banach function lattices over the same measure
space. A is denoted by A3 %4? and is also a Banach function lattice with norm
I fll 4=infA Under supplementary assumptions on A and using vector-valued
functions, Calderén shows that, e.g., (Ay(By), 4(B))<As °A((Bo, By,
where A(B) denotes the Banach space of B-valued measurable functions f(x),
such that || f(x)llze4 and [ f| 4= f(X)pll4 The inclusion becomes norm
equality if feA, |f,I<|f], f,—0 a.e. implies [ f,]|,—0. Also, he proves an an-
alogous result for CY and, using this, he gives an example of a couple for which
Ay #A®. However, Sestakov [1] has found that if By=B,=C then Ay co-
incides with the closure of 4(4) in 457°AY, and that Ay, is a closed subspace
of A%, on A, the norms being equal.

5.8.2—3. Section 5.2 and 5.3 are originally due to Lions-Peetre [1] and Peetre
[10]. Formula 5.2(1) in the case p=1 was found by Peetre [10], and, in general,
by Krée [1] (see Oklander [1] and Bergh [2]). Also, the idea of considering the
functional L is Pectre’s [18]. (In connection with Theorem 5.2.4, see also Beren-
stein-Kerzman [1].)

The Lorentz spaces L, were introduced by G.G. Lorentz [1,2] in 1953.
Calderén [3] indicated their full significance in interpolation theory. (See also
Krein [1] (g=1), and 1.7.) Sharpley [1] considers “weak interpolation” of a
generalization of the spaces L, .
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Using Formula 5.2.(1) and his Theorem 3.6.1, Holmstedt [1] proved the
formulas in 5.7.2 and 5.7.3. In that paper, he was also able to determine with
more precision the constants in the norm-inequalities of the generalizations of
the Riesz (5.2.3) and the Marcinkiewicz (5.3.2) theorems. His tool was the sharp
form of the reiteration theorem (cf. 3.13.15), and his results were that in the Riesz
theorem (5.2.3) the constant is independent of 8, and in the Marcinkiewicz theo-
rem (5.3.2), the constant is O(6*°(1—6)*), where o,=min(0,1/s—1/q)+
min(0,1/p—1/r). In a sense, these constants are the best possible (see Exercise
5.7.7).

Let us also point out that there is a close connection between Theorem 5.2.1
and Hardy’s inequality. General forms of Hardy’s inequality are found in, e.g.,
Andersson [1], Tomaselli [1]. (Cf. also the proof of Theorem 1.3.1.)

5.8.4. In Section 5.4 the original result (5.4.1) is due to Stein and Weiss [1].

The interpolation functions have been treated in several papers, e.g., Foias
and Lions [1], Donoghue [1], Peetre [13] (for more references see, in particular,
Peetre [13]). Theorem 5.4.4 was given by Peetre [13]. For exact interpolation
functions, i.e. C=1 in the norm-inequality, the problem of determining all
interpolation functions is still open, except for p=2 (see Donoghue [1]).

Gilbert [1], following Peetre [6], has obtained a characterization in the off-
diagonal case. Gilbert studied thus the spaces (L (wo), L,(w;))s, for p#4. In
particular, he was able to complete the identification of the Beurling spaces
with interpolation spaces (L (w,), L,(w,)),, begun by Peetre. Lemma 54.3 is
in part due to Lorentz [3] (see also Peetre [16]). Note that the function k, con-
structed in the last part of the proof, is the least concave majorant of the function
h; this is Exercise 12.

5.8.5. Theorem 5.5.1, varying both the measures and the exponents, was shown
by Peetre [18].

Lizorkin [1] has characterized the interpolation space (L, (wo), L, (w))g,
as a certain weighted Lorentz space. Theorem 5.5.1 is thus a corollary of Lizorkin’s
result. However, Lizorkin considers only the case 1<p,, p;, g< 0.

5.8.6. Early results on interpolation of spaces of vector-valued functions are found
in Gagliardo [1] and Lions-Peetre [1].

Note that Theorem 5.6.2 is valid also for non-discrete measures. For in-
stance, we have

(Lpo(A0)3 Lpl(A 1))9,p = Lp((AO’ A 1)9, p) H

if 1/p=(1—0)/po+0p, (cf. Lions-Peetre [1]). Cwikel [1] showed that there is
no reasonable generalization of this formula to other values of p.



Chapter 6

Interpolation of Sobolev and Besov Spaces

We present definitions, interpolation results and various inclusion and trace
theorems for the Sobolev and Besov spaces; our approach follows Peetre [5].
In the first section, we introduce briefly the Fourier multipliers on L,, and we
prove the Mihlin multiplier theorem. In Section 8, we discuss interpolation of
semi-groups of operators. Many other topics are touched upon in the notes and
comment, e.g., interpolation of Hardy spaces H,.

6.1. Fourier Multipliers

Throughout the chapter we shall discourse within the framework of the tempered
distributions. The test functions for the tempered distributions are the infinitely
differentiable functions f from R” to €, such that

P o f)=5up, pn(1+ x|)7|D* f (x)]

is finite for all m and ali o. By D* we mean

1 ‘ alalf
it 9x3 ... Oxan

where |o|=0a,+ - +a, is the order of the multi-index a=(ay,...,q,), ie.
the order of the derivative D* f. The class of these functions f is denoted by &;
it is a topological vector space, the topology being given by the seminorms
P, Af),m=0,1,..., a|>0. The dual of &, the space of tempered distributions,
is denoted by &

The Fourier transform is defined on & by the formula

F (&)= (&)= [rmexp(—i{x, &) f(x)dx.
By Fourier’s inversion formula, we have

S)=F HF f))=Qn) " frmexpli(x, £) f(&)dE.
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On &, the Fourier transform is given by

FLo={LFg,

where fe%’ and ge&. This has a meaning, since ge implies that Fge .
For a proof of this statement and for more facts concerning the tempered
distributions, we refer to L. Schwartz [1].

In this chapter L, will always mean L,(R" dx), with norm |-],: 1<p<co.
(For the case 0<p<1, see Notes and Comment.) Moreover, derivatives are to be
interpreted in the distribution sense: D* f (fe%”) is given by

D fg>=(-Df,D*g>  (ge),

where, of course, D*g are derivatives as above. Also, equality is to be interpreted
in the distribution sense, i.e. f;=f, means that {f},g)>={f,,¢9> for all ge&.

6.1.1. Definition. Let pe&”". p is called a Fourier multiplier on L, if the convolution
(F 'p)xfeL, forall fe, and if

sup =1 I(F "1 p)* 1,

is finite. The linear space of all such p is denoted by M ,; the norm on M, is the above
supremum, written ||| .

Since & is dense in L, (1< p<c0), the mapping from & to L,: f—(F 'p)x f
can be extended to a mapping from L, to L, with the same norm. We write
(F ~'p)xf also for the values of the extended mapping.

For p=oo (as well as for p=2) we can characterize M,. Considering the
map: f—(F 'p)xf for fe€, we note that it commutes with the translations.
Therefore, pe M iff

(F o fOISClflo (feS)

But this inequality also means that % ~!p is a bounded measure on IR". Thus
M 1s equal to the space of all Fourier transforms of bounded measures. Moreover,
lpliar., is equal to the total mass of & ~! p. In view of the inequality above and the
Hahn-Banach theorem, we may extend the mapping f—»% "lp=*f from & to
L, to a mapping from L to L, without increasing its norm. The extended
mapping we also write as f—»% “'pxf (feL,p).

6.1.2. Theorem. If 1/p+1/p'=1 we have (1<p< )
1) M,=M, (equal norms).
Moreover,

M, ={peS'|F ~1p is a bounded measure}

2
lplla, = total mass of F~'p
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and

(3) M,=L_ (equal norms).

For the norms (1<pg, p; < 0)
4 HPHM,,Sllpllil;fllﬂliil,,‘ (peM, n"M,)

if 1/p=(1-0)/po+06/p, (0<0<1). In particular, the norm |||, decreases with p
in the interval 1<p<2, and

5 M,cM,cM,cM, (1<p<q<2).

Proof: Let fel,geL, and peM,. Holder’s inequality gives
(Z~p)* fgOI<IUF ' 0= f 1, llgl < lollag, 11,1191,

From this we infer that f‘ip*geLp,, and that peM, with [p]y,, <[ply,-
This proves (1). The assertion (2) has already been established. Parseval’s formula
immediately gives (3). In fact,

supy =1 I(F " 1p)x flla=supser, o Fl/1F 1= 1ol o

Invoking the Riesz-Thorin theorem, (4) follows, since the mapping f—(F ~!p)* f
maps L, —L, with norm Hp{|Mp0 and L, —»L, with norm “p“Mm’ Using (4)

with p,=p, p, =p’ we see that

1P, < WPllae,,  P<9,
from which (5) follows. [

Considering (3) and (5), we may clearly multiply p,e M and p,eM ,(1<p <voo)
to get a new function pelL:p(&)=p () p,(¢). Obviously, we get peM, and

lolv, <lpilim,lp2lm,-

Note also that M, is complete. Thus M, is a Banach algebra under pointwise
multiplication.

In order to clarify the next theorem we write M,=M (IR") for Fourier
multipliers which are functions on R" The theorem says that M (IR") is iso-
metrically invariant under affine transformations of R".

6.1.3. Theorem. Let a:R"—>R™ be a surjective affine transformation. Then the
mapping a*, defined by

(@ p)(Q)=pla) (R,
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SJrom M, (R™) to M, (R") is isometric. If m=n, the mapping a* is bijective. In
particular, we have

1o ae ymmy= 1P lprmmy  (E#0)

”p(<x">)HMp(R") = “p(°)HMp(R) (x#0).

Proof: It is easy to see that M, is isometrically invariant under nonsingular
linear coordinate transformations. Therefore, we may choose coordinate systems
in R” and R™, such that a({);=¢;,j=1,...,m. Then

a*p=p®1,

where &,,..., &, are acted on by p and the remaining n—m (>0) variables by 1.
Thus, with fe%, we obtain

17 @) S, =1(F T p®O)* [T, < Iplae, 111,

by inspection of the integrals. This gives

(6) la*p ”M,,(m") <lp ”MP(R"‘)'
Finally, taking

f(x)=f1(x1’ et xm) f2(xm+ 197 xn),
equality in (6) follows. 1

The Fourier multipliers can be defined also on certain vector-valued L,
spaces. We will use results for Fourier multipliers on L, with values in a Hilbert
space. Therefore we consider only this case. Let H be a Hilbert space, and consider
the space L (R";H)=%(H) of all mappings f from IR” to H, such that
1+ |x]y"|D* f(x)lly is bounded for each « and m. The space L(¥(H,),H,)
consists of all linear continuous mappings from &(H,) to H,, where H, and H,
are Hilbert spaces. This space is & if H,=H,=C. Clearly, we may define the
Fourier transform on &(H,) and on L{(¥(H,), H,) in the same way as before.
The integrals converge in H,, and it is obvious that the inversion formula holds.
We shall also use the notation &'(H,, H,) for L(¥(H,), H,).

6.1.4. Definition. Let H, and H, be two Hilbert spaces with norms ||-|, and |||,
respectively. Consider a mapping pe¥'(H,, H,). We write peM (H,, H,) if,
for all fe S (H,), we have (F~'p)xfeL,(H,) and if the expression

Sup“f”Lp(Hﬂ) =1 ”(9.-—1‘0) *f ”L,,(Hx)

is finite. The last expression is the norm, ||plla a1, m, in M (Ho, H,).
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Theorems 6.1.2 and 6.1.3 have obvious analogues in this general situation.
The proofs are the same with trivial changes.

6.1.5. Lemma. Assume that L is an integer, L>n/2, and that peL,(L(H,, H,))
and D*peL,(L(Hy, H,)), la|=L. Then peM,(H,, H,), 1<p<co, and

lola, <ClpllL, *(upu =L 1Dl

where 6=n/2L.

Proof: Clearly, pe¥'(H, H,). Let t>0. By the Cauchy-Schwarz inequality
and the Parseval formula, we obtain

j[x|>t IF = PO Lt @3% < Jpys e 1] X1 1F 1 o Lo, 4%
< Ct"/Z-Lsup[aq L ID* P Lyito, 1)

Similarly, we have

§iet <t | F 7100 Litto, 3% < CE PN Lywitto -
Choosing t such that |pll,,= t_LSUP]aq=L [D*pliL,, we infer that
1plae, < N1olae, = San 1F = PO Lt 1, @X S Cllpll L, *(supyy - L] DIl LY.
Here the first inequality is a consequence of Theorem 6.1.2. [
Our main tool when proving theorems for the Sobolev and Besov spaces is the
following theorem. Note that 1 <p< oo here in contrast to the case in Lemma

6.1.5.

6.1.6. Theorem (The Mihlin multiplier theorem). Let H, and H, be Hilbert
spaces. Assume that p is a mapping from R" to L(H,, H,) and that

(7) E1 Do)l ittty <A (<L)
for some integer L>n/2. Then peM (H,, H,),1<p<co, and

1Pl < C,A.

In the proof we use the following two lemmas. The first is frequently used later,
and the second is essential to the proof of the theorem.

6.1.7. Lemma. There exists a function ¢e S (R"), such that

(8) suppo={£]27'<¢[<2}
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&) ®&>0 for 271<|¢<2

(10) 2z @27F)=1 (£#0).

Proof: Choose any function f €%, such that (8) and (9) are satisfied. Then
suppf(27%¢)={¢]2* "1 <E< 2471,

Therefore the sum

F@)=)% o f(2759

contains at most two non-vanishing terms for each £#0. Clearly, Fe&, and
F(&)>0 for £#0. Put ¢=f/F. Clearly, pe%, and satisfies (8) and (9). Since
F(27i8)=F(¢), ¢ also satisfies (10). [

6.1.8. Lemma. Let feL, and o>0. Then there are cubes I, v=1,2,..., with
disjoint interiors and with edges parallel to the coordinate axes, such that

o<pl,) ', If(x)ldx<2",

lfx)I<o ae x¢{J, 1,

Proof: Choose cubes I'¥ (v=1,2,...) with disjoint interiors and edges parallel
to the coordinate axes, and such that

1 I i@ | f () dx <o

Split each I'” into 2" congruent cubes. These we denote by IV, v=1,2,.
There are two possibilities: either

pI) " o [f(X)|dx <o
or
I 0 [ f(o)ldx>a.

In the first case we split I{! again into 2" congruent cubes to get I'? (v=1,2,...).
In the second case we have

o< I i | f (0)ldx<2"0

in view of (11), and then we take I{!) as one of the cubes I,. A repetition of this
argument shows that if x¢( )i, 1, then xel¥ (j=0,1,2,. ) for which

v=14%y
/l(I(vjj))—>0
and
w1 frp 1S ldx<a (=0,1,...).
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Thus |f(x)|<o ae. x¢| 2,1, by Lebesgue's differentiation theorem (see, e.g.,

v=1"vy

Dunford and Schwartz [1]). O

Proof of Theorem 6.1.6: Obviously, pe¥'(H,, H,), and, taking o«=0 in (7),
also (Theorem 6.1.2)

F " lpx: Ly(Hy)— L,(H)).
If, in addition, we prove
(12) F " pwi LHo)~ Ly o(H,),
then it follows that
FlpxL(H)—-L,H,) (1<p<2)

by the Marcinkiewicz theorem, and thus pe M (H,, H,) (1<p< ) by Theorem
6.1.2.

In order to simplify the notation, we shall give the rest of the proof for the case
H,=H,=C.

Thus, we need prove only (12). For f e, (12) takes the form

(13) om(o, F " 'p+f)<Clfl; (o>0).

Now we decompose f into two terms (¢ >0 fixed):

f) =)', fyde,  xel,, v=1,2,..,
Jolx) =

0 elsewhere

pd)" L, f(odt,  xel,, v=1,2,..,
1(_)(.:

f(x) elsewhere

where I, are the cubes of Lemma 6.1.8. Since
mio, F " pxf)<m(0/2, F " pxfo)+m(o/2, F " pxfy)

for any decomposition f=f,+f;, it is enough to prove (13) with the functions f,
and f] respectively on the left hand side.

In order to estimate m(o/2, % ~!p=*f,), we first note that the mean value of f,
over each I, vanishes. We have, with a, as centres in I, and 21, as the result of
enlarging I, to double its edges,

m(c/2, F " lpxf)

14
44 <o(IF prfol> 012 AR 20) + a2 , 21,
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Now, since the mean value of f, over I, vanishes,

Sruge,2n, |F 7 #fo(x)] dx
(15) <Z‘3°=1Lv(fmugo=,uv197_Ip(x—y)—f“p(x—av)ldX)lfo(y)ldy
<C2?=1 Lvifo(y)ldySCHle,

if we prove that
(16) frmuz. 20 17 T px—y)—F T p(x—a)ldx<C, yel,

We postpone the proof of (16) in order to conclude the estimates. By (14), (15), (16)
and Lemma 6.1.8, we obtain

17 m(/2, F " pxf) <Co | fll +2° Y5 I )< Co™ I f 1], -
By the inclusion L,< L, ., ¢eM, and Lemma 6.1.8, it Tollows that

a’m(a/2, F " 'pxf)SCIF 'pxfi13=CI 1113

(18) =C{ )™ i SOdx 1 + fgmus. £ (3)[2dx)
< Co{Y 2 Ufr, fO)dx] + fgmyue. 1,1 f ()ldx}
<Colifl,.

The estimates (17) ahd (18) yield (13) as we noted earlier.
There remains the proof of (16). Clearly, it is sufficient to prove that

(19) Sz 2l F " px =) —F T p(0)ldx<CA  (ly]<t,t>0).

We may obviously assume that p(0)=0. Then, writing p(&)=@2 *&)p(&),
we have Y2 _  p,=p. Thus

Sixiz 21 F " plx—y) = F 7 p(x)dx

<Y2 o fisiz 2l F T odx =)= F T pu0)ldx,
and (19) will follow if we prove

§ixiz 201 Lol =)= F "L p(x)ldx

(20) <CAmin((t- 2527124 (ly|<t, L>n/2).
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To complete the proof, we now have to prove (20). Using the Cauchy-Schwarz
inequality and Parseval's formula, we get
j]x[; 2t Ig’._lpk(x—)’)—g'._ lpk(x)ldx<2j1x|zr]3'7_ lpk(x)ldx
SC(fapz 1251720 dx) 2 ([ g5 |25 X PHLF 1 p2dx)'
SCE2PTR27R 2 ([ e g < s gy =1 27419 1D 0§ PdE) ' 12
< CA(I 2k)n/2-—L,
since, as is easily verified, |&*|D* p (&) <CA (Jo|< L, (eR", k=0, +1,...). Simi-
larly, we obtain (ly|<1)
Jixiz 21F ~ L pldx—y)— F "1 pyx)| dx
< JbJnl<r. 8100 F 1 pyx —ty)yldxde < Cr Y |0F ! pyox,
SCEY o (J(+ 252 Rdx) 2 ([(1 + 125X |0F ~ 2 p/ox ;| dx) >
SCrYT 279 (- s aqg < v 1 2 <. 229 DE o £ dE)
< CAt- 2.

The last two estimates give (20), and so the proof is complete. [

6.2. Definition of the Sobolev and Besov Spaces

We give Peetre’s definition of the Besov spaces, and also a definition of the
generalized Sobolev spaces.
Using the standard function ¢ of Lemma 6.1.7 we define functions ¢, and y by

Fodd)=027") (*k=0,£1,£2,..)
FYO)=1-3190271).

Evidently, ¢, €% and e &.
Moreover, we shall use two operators J* and I*, both from & to ¥, defined by

Ff=F Y1+ |")*Ff} (seR, feS)

Pf=F"Y|-F f} (seR,feF,0¢suppF f).
The operators J™* and I™* are often called the Bessel and Riesz potentials of
order s respectively.

Some simple properties of the objects just defined are collected in the following
lemma.
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6.2.1. Lemma. Let fe¥’, and assume that ¢, *f€L,. Then (1<p<0;seR)
1 1 oexf 1, < C2%¥| @S,  (k=1),
) [Pouf1l,<C2%*|@exf 1, (all k),
and in addition if Yy*felL,
&) 1Y *f 1L, <C Y *f1l,
where the constants C are independent of p and k.
Proof: Note that
PeHS= Y= 1 Prs ¥ it
holds for all k. Thus, if we establish that

4) l|‘g’_(‘]s(pk+l)”Mp< c2%
(I=0,%£1)
(5) H'aj;(ls(l)k+1)|lMp<C2ks

then (1) and (2) foliow.
To prove (4), we note that the function

F Gy =W+ P2 o=+ 1024
has the same norm in M, as the function
2(k+l)s(2—2(k+l)+ l,|2)s/2(p(,)

by Lemma 6.1.2. Using Lemma 6.1.5, it is evident that the latter function in fact
belongs to M, with norm at most C2% (k=1), and thus (4) is established.
Formula (5) is easily proved in a similar way.
Finally, to prove (3), we note that

Yxf=W+o)xy+f.
We need prove only that % (J°y)e M, but this is obvious by Lemma 6.1.5. [

The previous lemma provides a background for the following definition of the
Besov and the (generalized) Sobolev spaces.

6.2.2. Definition. Let seR, 1<p, g< 0. We write

1S 5= f 1+ Qo 1 2% xS 1] ),
1A= 171
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The Besov space B, and the generalized Sobolev space H;, are defined by

By, ={[:f eS| fl}y< 0},
H, ={f:fe%" | fl}<o0}.

s

Clearly, B, and H} are normed linear spaces with norms ||, and |-}
respectively. Moreover, they are complete and therefore Banach spaces. To
prove that Hj, is complete, let (f,) be a Cauchy sequence in Hj,. Then geL, exists
(L, is complete) such that

Ifa=d gl =1 fo=gl,»0  (n>00).

Clearly, J™°ge %" and thus Hj is complete. From this, Theorem 3.4.2 and (10)
below, it follows that Bj, is complete. Thus H;, and B}, are Banach spaces. Finally,
the definition of B;, does not depend on the choice of the function ¢, i.e. with
another choice we get an equivalent norm. This follows similarly from (10) below.

We give some elementary results about Hj, and Bj,. First we consider Hj,.
In the following theorem there appears an alternative definition of H, for positive
integral values of s in terms of the derivatives D*f (ja|<s) of feH;. (Note that
Hy=L,(1<p<w))

6.2.3. Theorem. If s, <s, we have
HyPcH}  (1<p<o).

Moreover, if N2=1 isaninteger and if 1<p<co then
HY={feL,|o"f/ox}eL,, (1<j<n)}

and

(6) IA15 ~ 2= N f1axt i, + 111, -

Finally, & is dense in H, (1<p<o).

Proof: Suppose that feH;>. We shall see that J*~*> maps L, into L,. From
this we get the first part of the theorem, since

A1 =1 S, =152 fl, < CII= fll,=C f i}

In order to see that J™%: L —~L, if e=s,—5,>0, we use Lemma 6.2.1 and
obtain

W= f < N f 1+ 20 1 1 o 1,
SCY /1, + 201 27 * o 1 ) <SCU+ T 279 1 f 1,

This completes the proof of the first part of the theorem.
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To prove the second part, we invoke the Mihlin multiplier theorem to obtain
EN1+1¢1%)"M2eM, (1 <p<oo). Thus

oY f1oxi N, =11 {&fF [,
=[F A+ P FUNNNLLCIfl;  (A<j<n).

This gives one half of (6). For the other half of (6), we use Mihlin’s multiplier
theorem once more and an auxiliary function ¥ on IR, infinitely differentiable,
non-negative and with x(x)=1 for |x|>2 and x(x)=0 for |x|<1. We obtain

A+ P2+ Y02 &M T eM,

X(éj)[éleéj_NEMp

(1<p<oo).

Thus
WY fl,<CIF~HA+ 205 0 EHIEIMF fHI,
SCUfllp+ X5= I F ~HrEIEINE N F (@ /ox)} )
SCUf N+ 25=118% /x1,).

It remains to prove the density. Take feHj, i.e. J° feL,. Since & is dense in
L, (1<p<), there exists a ge.#, such that

If=J =gl =19 f—4l,

is smaller than any given positive number. Since J *ge ¥, & is therefore dense
in HS. [
14

The results for the Besov spaces B;, correspond in part to the previous theorem

for the Sobolev spaces H;,. We split up these results into two theorems.
6.2.4. Theorem. If s, <s, we have
(M BpcBy, (1<p, g<0).

If 1<q,<q,< 0 we have

(8) By, =B, (seR,1<p<w).
Moreover,
9 B, ,cH,cB,, (seR,1<p<w).

If sq#s, we also have

(10) (Hy, H}))p =B,

P pq (1<P,q<00,0<9<1),

where s=(1—0)so+0s. Finally, if 1<p,q<oo then & is dense in B;,.
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Proof: The formulas (7) and (8) follow at once from the definition of B},. The

density statement is a consequence of (10), Theorem 3.4.2 and Theorem 6.2.3.
The inclusions (9) are obviously implied by the inequalities in Lemma 6.2.1.

It remains to prove (10). Let fe(H}, H}')y,, and put f=f,+f}, fie H; (i=0,1).
By Lemma 6.2.1, we obtain

ouxf 1, < Nl @foll ,+ ll@uaf i1, S CRT¥[T% foll, + 2755 T £11,),
and, taking the infinum,

l@ef 1, < C27o* K250, f Hy, ).

p
This gives

Q= C* o 1D CUS iago 000,

Similarly, we see that

1 +f1l,< CK(, f; B, B < C LS ltgo,re.

and thus

1150 < C S g tsne o
The other half of (10) follows easily from the inequalities (Lemma 6.2.1)
QK70 J(2Ke1 70, g xf; Hyp, Hy) < C2%( @y f |,
J Y= HY, HY) < Cly+f 1,
where f€B;,. It remains to show that
f=U*f+2 (@gpxf in HP+HS'.

But if, say, so<s; then Hp+H,'=Hy, and

p°*

I xf 1y + 2 oS I S CUY f 1, + 2 1 2407925 gpaf 1l ,)
<C|fi

s
pe

by Hoélder’s inequality, since sy<<s. [

The next theorem points to an alternative definition of the Besov spaces
Bj, (s>0) in terms of derivatives and moduli of continuity. The modulus of
continuity is defined by

Cl);,"(l’,f) = Sup|y|<t HA;)"f”p:'
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where 47 is the m-th order difference operator:

a7 f(x)= Z?:o<',:l>(—1)kf(x+ky).

6.2.5. Theorem. Assume that s> 0, and let m and N be integers, such that m+ N >s
and 0N <s. Then, with 1<p< o0, 1<g< 0,

W Tpa~ 1+ 5= 1 (8 ¢V (e, 0N f/0x]))dt/0) .

Proof: We note that ] is an increasing function of ¢. Therefore it is sufficient to
prove that

L Iog~ SN+ 2= Q2 - Q™M (27,8 /ax))n 1),

First we assume that feB;,. Put p()=(1—exp(i{y,£>))". We shall prove
that for all integers k

(11 I, %@, 3"f f0x] |, < Cmin(1, |y["2™) 2" |, *f 1|,
and that
(12) o, +"f joxY||, < Cmin(1, [y|™ Iy =f | .

Before proving these estimates, we shall show that they give the desired con-
clusion.
Thus suppose that (11) and (12) hold. Then clearly

206N gym(2 = Vo xY)
SO 20796 Mmin(1,27 0™ 2% g #f ||, + min(2, 277) [y +f | ).
The right hand side is a convolution of two sequences, namely the sequence

(2%~ Mmin(1,27*)=___ and the sequence (a,)P where a,=2%|lg, *f |, if
k=1,a,=y /|, and a,=0 if k<0. Since

— 0

Y 025 Mmin(1,27") < 00
we conclude that
(522 - a2V Y O S CEE ) =C 1 f Ty
In order to prove (11) we note that p.e M, and p (-)<{y,-> ™eM, and
[0,l5,<C

12,()<ys> "™, <C
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for all ys#0. This follows from Lemma 6.1.5 and Theorem 6.1.3. Similarly
1<V yh->m0C) I, <C,
which implies
<y, >" @27 )l pg, < Clyl™2"
It follows that

o, % @x 8% 0x] ||, < Cmin(4, |y["2") | o, x OV /6N,
g Cmin(i,]ylmzmk) 2Nk ” (,Dk *f ”p -

This proves (11). The estimate (12) follows in the same way.
The converse inequality will follow if we can prove the estimate

(13) ”€0k*f”p<C2_NkZ?=1 ”pjk*al\.lf/ax;v”p

where py=p(, -« €; being the unit vector in the direction of the ¢;-axis. In fact,
if (13) is valid we have (since yeM,)

1 e < CULS T+ e Q™M xS 10X 1)) )
SCUS N+ Y= QU 12X~ w278 8% /ox)He)

which implies the desired inequality.
In order to prove (13) we need the following lemma.

6.2.6. Lemma. Assume that n>2 and take ¢ as in Lemma 6.1.7. Then there
exist functions y;€e ¥ (R") (1<j<n), such that

di-ik=1 on suppe={{|27'<[¢|<2}

suppg,; = {EeR" €=/} (1<j<n).
Proof of the lemma: Choose ke¥(R) with suppk={lcRR| ]5]2(3]/;)_1}
and with positive values in the interior of supp k. Moreover, choose le #(R"™1)

with supp /= {{eR""' ||€|<3} and positive in the interior. Writing
6]: (515 st éjmla éj-%» JERER] én) and puttlng

A =KEYUEY LS K(ENUE)  (1<j<m),

where Y"_, k(¢)I(E)>0 on supp ¢, only routine verifications remain to com-
plete the proof of the lemma. 10
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We now complete the proof Theorem 6.2.5, i.e. we prove Formula (13). B
the previous lemma we obtain the formula

loexf [ ,<IF o )F f}1,
<Y F T {127 eTFF f,
SC27MNYn_ o+ 010N,

since, by Theorem 6.1.3 and Lemma 6.1.5, we have
TAEQ(ENexp(ic ) —1) g Ne M
for 1<j<n 1<p<w. [
We also have the following consequence of Lemma 6.2.1.

6.2.7. Theorem. J° is an isomorphism between B;, and B;,°, and between H;
and H;™°.

Proof: Obvious, in view of Lemma 6.2.1. [
6.2.8. Corollary. If 1<p<oo we have
(HyYy=H,® (seR).
If, in addition, 1<q< oo we also have
(B; ) =B, (seR).
Proof: The first formula follows from Theorem 6.2.7 and the fact that (L,)'=L,

if 1<p<o. The second formula is implied by the first one, Theorem 6.2.4 and
the duality theorem 3.8.1. 1

6.3. The Homogeneous Sobolev and Besov Spaces

Sometimes it is convenient to work with symmetric sums of the form

1115, = - o @* [ @pf 1 )0,

where ¢, are the function defined in the previous section and fe%”. The space
ofall fe¥ for which || f H 1s finite will be denoted by B‘ homogeneous Besov
space. Note that B; isa seml -normed space and that | f Hs =0 if and only if
supp f={0}, i.e. if and only if f is a polynomial.
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There is also an analogous notion of a homogeneous (generalized) Sobolev

space H;,. The elements of H5 are those fe %' for which Y2 F “1(|EF F g, +f)
converges in .’ to an L ,-function. We write

[l =150 o # T P F oex,
(Note that [£[°# (¢, *f) is always a tempered distribution.) Again Hs is a semi-
normed space and | f | |* =0 if and only if f is a polynomial.
Several results for the spaces B;, and Hj carry over to the spaces B , and
H; For instance we have the followmg theorem which corresponds to Theorem

6.2.4 and Theorem 6.2.5.

6.3.1. Theorem. If 1<q,<q,< w0 we have

B, B (seR,1<p< ).

pa; pPqz

Moreover,

B cHSCB (seR,1<p< o)
and

(H, HSYy ,=B3,  (s=(1—0)sq+0s,,0<0<1,1<p, g< 0).
For s>0, and m, N integers such that m+N>s and O N <s we have

1 5g~ XN (S (e, f/x})Fde/r) e (1<p<o0,1<q<o0).
Finally, for any positive integer N,

£ ~ 25110 ox}l,  (t<p<co),
if f vanishes in a neighbourhood of the origin.

Proof: The first inclusion is obvious. In order to prove that H* cB;w, let f eH;.

Then Y °_ F '|EFF @,*f) converges in &' to a functlon geL,. Define
1, by the formula F y (&)= €] *p(27%¢). Then, for any he ¥,

Oerf *h0) =3 "_ _,@1*f * @ xh(0)=g* x, +h(0).
Since || F yillm, <C27* we conclude that
o xf *h(O)| < C2™* g, | All -

It follows that g, *f],, <C27%, ie feB:,
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Next we prove that B}, cH;. Take f eB;l. Then easily
17~ HIEFF oerf 1, < C2¥ xS, -
Therefore Y * F ~HEFF @, *f) converges in L, and thus f eH;.
The proof of the interpolation result is the same as that of Formula (10) in
Theorem 6.2.4. )
The equivalent representation of the semi-norm on Bj, follows at once from

the proof of Theorem 6.2.5 (see Formula (11) and (13)).
For fe4% we have

N dx =30 _ NS [oxY =F THE TN Y o [N F S
(with convergence in L,) and since ¢Y|¢|™¥e M, for 1<p< oo, we obtain
16% /ox} I, <Cl £

Conversely, let i be defined as in Section 6.2 and let y be as in the proof of Theorem
6.2.3. Then

MO (5= EIE N e M,
Thus if f(&)=0 for &|<28,
1F T HIENF [, =" 1F YIS S (/O F 111,

SCPI A NF T HESOE NN F [,
<CYi- .10 /ox}

since X(éj)léj‘Néj_NEMP' 0

Next we investigate the connection between the dotted and the non-dotted
spaces.

6.3.2. Theorem. Suppose that f€%' and O¢supp f. Then
feB =feB, (seR,1<p,q<m),
feI:Ij,c»fer, (seR,1<p<w).

Moreover,

1) B, =L,nB, (s>0,1<p,g<0),

) HS =L,nH (s>0,1<p<co).
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Proof: If f(£)=0 in a neighbourhood of £=0 and if feB, then ¥ *f (being

P

a finite sum of the form Y,y *@,*f) belongs to L,. Thus feB;,. Conversely,
if feB,, then gxf=@xf*f if k<O0. Thus ¢.xfeL, for all k and, since
Ce<o@*l@e*/ 1 )9 is a finite sum, feBs,.

If still f(£)=0 in a neighbourhood of ¢=0 then f=),,, @.*f for some
integer k,. Noting that (1+ |£])"2|]7*) 5, 1027 ' &)e M (see Exercise 3 or 4),
we see that for f EH‘:,

LA =1F " A+ P Y- 1027 'O Yani, EFEF @i/},
<CIifIs.

Conversely, if feHS, then we note that |[*(1+|¢|?)"*e M (see Exercise 3
or 4). Thus

1f =12 "1l + EP) P F I fH,<CIf 1.

(This holds without the assumption f(£)=0 in a neighbourhood of £=0.)
In order to prove (1) we first note that it is obvious that for all se R

ns s
LP N qu < qu‘

Conversely, if feB,,, then [lo,*f[|,<Cly=f|, for k<0. Thusif s>0

rq’

Q<o @*l@e+f 1)V C Y f |,

then feB;q. .
If feL,nH}, then we obtain as above

LA <IF T HU+ P T L0027 O Xaz o K F @ xf 1,
+IF T HUA+ P Lkco0R7*OF [, <CU I3 +111)-

(This holds for all selR.) Conversely if s>0 and feH;, thenclearly feL, and

Ll <IF~HIEFA+IED) ™2 F Yos 1 0x 11,
+Y o2 I F THRTHEN 9 TFOF £,
SCUY s 10 IS+ LI )SCISIE. O

64. Interpolation of Sobolev and Besov Spaces

We have already established that if s;#s, then (Theorem 6.2.4)

(HY, H3)y ,=B5,,  (0<0<1,1<p,g< o),

rq>
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where s=(1—#8)s,+80s,. We shall now prove some other interpolation results
using theorems from Chapter 5 on interpolation of L, spaces. To bring out
the connection we introduce the concept of retract. For other terminology,
see Chapter 2.

The results throughout this section are stated for the non-homogeneous
spaces Hj and B},. However, it is easy to adapt the proofs so that all the theorems
hold when the homogeneous spaces H), and B, are substituted for H; and B},
respectively. (Cf. Notes and Comment.)

6.4.1. Definition. An object B, in a given category, is called a retract of the object
A, if there are morphisms $:B—A and P#:A—B, in the category, such that
Po # is the identity on B.

If B is a retract of A we have the following commutative diagram

B4, B

W

the letters .# and 2 being used to remind the reader of the words injection and
projection.

6.4.2. Theorem. Assume that B is a retract of A in the category N, ( of all compatible
couples of normed linear spaces), with mappings % and P. Then By, and B, , are
retracts in A" of Ay and A, , respectively.

Proof: The theorem follows at once from the interpolation properties. 0

We shall now introduce two mappings .# and . The mapping .# maps &’
to the space of all sequences of tempered distributions. It is defined by

(JFf)j=0;xf for j=12,...,

(I fo=Y*f.

1)

The mapping £ is given by

04 Pa=) 2 of;xa,

where a=(x)%,, v;€,j=0,1,... and
Po=Y+9,,

@j =Z}=—1(pj+lf i=12....

We are not saying that 2 is defined on all sequences (x)?, of tempered distri-
butions, but only on those sequences for which the series defining 2« converges in
&' Clearly 25 f=f, feS’, since §;*¢;=¢;, j=1,2,3,... and @o*y=y.
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6.4.3. Theorem. The space B,, is a retract of [(L,) (seR,1<p,gq< ), and
H; is a retract of L), (se R,1<p< o). The mappings P and 5 are defined by
(1) and (2).

Proof: First we note that

1f I~ s 18+ 252 120/ 1 )M = (T2 0 27 1(F £);1,))4,

1 e~ 12 M,

iLe.

Thus J: By, —E(L,). Moreover, since yxPa=y*a, and @ *Pa=q*o
for k=1, we have

12 aly, =¥ *agl,+ Qs 12Xl opra] )1
< C(H“o”,;‘*‘(Zkz (25 ||°‘k|1p)q)1/q)< C “ﬂ'za(L,,y

Thus B, is a retract of [}(L).
Next we prove that #: H;, — L (I3), 1 <p<co. We may write

Ff=(F I f

where ye &(C,E)=L(¥(R",[),L) is defined by
W)=+ ED™pL0,  j=1,2,...,
(Ao =(1+1E[2)~"2(2).

Then
&1 1D e, < eI o HID=(E),DD) 2 < C,,

since the sum consists of at most two terms for each & Thus J:Hy—L(5)
by Mihlin’s multiplier theorem (1 < p < co).

Finally, we establish that 2:L (I;)— H;, or, which is equivalent, that
JP:L)—L, Wemay write

FPB=F kxff
where f=(B)7, and f°=(2"B)%%,, and
KEB=Y =02 "1+ E)2 P LOB;

Clearly, ke %' (I, €)= L(¥(R"; l,), C) and

E1 DR 1010 1T 02 HIDH( + 1223 (DD <C,
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since the sum consists of at most four terms for each ¢. By Mihlin’s multiplier
theorem it follows that J*2: L (I5)— L, 1 <p<oo. The proof is complete. [

We also note the following important inclusion theorem.

6.4.4. Theorem. We have the inclusions
B,,cH,cB,,, (seR,1<p<2),

B, cH,<B; seR,2<p< o).

o
Proof: By Theorem 6.2.7, we need consider only the case s=0. Let 1<p<2
and take feB),. Since 2:L(l,)-L, and I,cl, we obtain
I 1,=12 2 S, <CUE S Lun<CIF fllLa,
=C([gn 220 (F N PAX) P CIE [0, <CUS1D,
Thus B),<L, for 1<p<2.

Next we prove that chBg2 for 1<p<?2. Using Minkowski’s inequality
and the fact that .#: L,—L(l,) and 2:13(L,)—» B, we see that

1f 152 =112 7 f152<CIF fligu,y=CLs ol (£ ) x)I7dx)*?)2
SC(fgnXjs ol(£ NHPY2d) P =CIF f 10y <Cl S,

The case 2<p< oo is settled by means of Corollary 6.2.8 and what was proved
above. []

The following theorem, which is a consequence of Theorem 6.4.3 and the
theorems of Chapter 5, contains the main interpolation results for generalized
Sobolev and Besov spaces.

6.4.5. Theorem. Let 0 be given so that 0<8<1. Moreover, let 3,54,5,, D, Do, Pi> 9 90> 4
and r be given numbers subject to the restrictions given in the formulas below. In
addition, put

s*=(1—-0)s,+0s,,

1 1-0 9

P  po Py

q 9o q,

1 1-6 0
x

Then we have

(1) (B;c:lov B‘;,lql)gyrzB;:, (507&31’ 1<P< CO, 1<"a‘10,q1<w)’



6.5. An Embedding Theorem 153

2) (B Bogogr=Bar, (1<p,q0,q; <),

3) (B3ao Byiar)o,r = Biegss (So#S1, P*=q* 1<Po,P 1,40, 1 < O),
4 (H?, H)g ,=B5ys (so#S1, 1<p,g< 0),

(5) (H oy HS ) o= Hi, (1<po:py < ),

(6) (Bioao By )ior=Bowges (o7 511 <Po»P1:90: 41 < ),

N (H2, H3 )= Hon, (So# S, 1 <Pgypy < 0).

Proof: The first two formulas follow from Theorem 6.4.3 and Theorem 5.7.1.
Formula (3) follows from Theorem 6.4.3 and 5.7.2. Formula (4) is contained in
Theorem 6.2.4, while Theorem 6.2.7 and Theorem 5.2.4 imply (5). Finally, (6) and
(7) follow from Theorem 6.4.3 and Theorem 5.6.3 and Theorem 5.1.2. [

6.5. An Embedding Theorem

Consider the space

={/eZ|Iflwy< o0},

where N is a positive integer and

I lwy = Ximen 1D 1,  (1<p<c0).

This space is the one originally defined by Sobolev. In Theorem 6.2.4, we state
that HY =WJ (1<p<o0).
It is well known that

wy<L, (O<n/p—N<n/p,),

which is the Sobolev embedding theorem. In this section we shall prove a cor-
responding theorem for the spaces H;, and B;,. We remark that, as in the previous
section, all results are valid also for the homogeneous spaces Hs and B®,, the
proofs being easily modified to cover these cases.

rq’

6.5.1. Theorem (The embedding theorem). Assume that s—n/p=s,—n/p,. Then
the following inclusions hold
B, =B}, (1<p<p;<o©,1<9<q,<o,s,5,€R),

H,<H} (1<p<p;<,s,5,€R).
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Proof': In order to prove the first inclusion, we use the estimates

xS N, =@rx @y fll, SC2VP=1P) [exf ], (k=1).

They are immediate consequences of Young's inequality, Theorem 1.2.2, and
the fact that ||¢,[,<C2*"! =@ (k>0). Similarly we see that

Wfll, <Cllb=11,.

By Theorem 6.2.4 we therefore infer that

L I = IS 1, + Qs 1 @ e £ 1], )
SCUY*S 1+ Qs 1 ¥ = f 1 )Y CL 111, 5

since g<gq,. This gives the first inclusion.

The second inclusion is proved using interpolation, with the aid of the first
one. Clearly, we need only consider the case s; =0, in view of Theorem 6.2.7.
Invoking Theorem 6.2.4, we have the inclusions

B, cBS ,cHS =L, .
Interpolating (with fixed p) the inclusions
By cL, (s—n/p=—n/p)),
BjicLy ("=n/p=—n/p)),
we obtain (Theorem 6.4.5)
By =By1: By 1o, S (L Lptdo,co = Lip,
where 6 is chosen appropriately. It follows that
H,cL, ,,

again by Theorem 6.2.4. Interpolating (with fixed s) the inclusions

HycL,, (s—n/qd=—n/q}),
Hy. <Ly, (s—n/q"=-n/q}),
we obtain (Theorem 6.4.5, 5.3.1, p<p,)

H,=(H}, H.)g ,<(Lgioos Lyyao)o.p=L, ,= L

P pip p1?

where, again, 8 is chosen suitably. [
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6.6. A Trace Theorem

In this section we use the notation B; (IR") for the Besov space on R". The spaces
H3(R"), #(R") and so on are defined analogously. We shall consider the trace
operator

Tr: (R)->F (R 1),
defined by
(TrHx)=f0,x), x'=(xz...,x,).

We shall prove the following result.

6.6.1. Theorem (The trace theorem). Assume that 1<p<oo, 1<g< oo, s>1/p.
Then the trace operator can be extended so that

Tr: B} (R")—B;; VP(R"™ 1),
Tr: Hi(R")— B, VP(R"™1).
Proof: We shall prove that
1) Tr: HY(R")— By, VA(R"™Y), m=1,2,....
In view of Theorem 6.4.5 (Formulas (1), (4), (6) and (7)), this implies the theorem
for s>1. By density we need consider only functions in &.

Let IR", be the half-space x;>0 and let H}(IR") denote the space of all
SeL,(R%) such that 0" f/ox7e L (R") for j=1,...,n. The norm on HJ(R") is

”f”Hrpn(m): Hf“L,,(Rq)"’Z;ﬂ ”amf/ax;"”Lp(lR';.)'

Let # be the restriction operator for R’,. Then, by Theorem 6.3.3, Z: Hy(R")—
H7(R",). Moreover Trf=Tr#f. Thus (1) will follow if we prove

(2) Tr: Hy(R" )> By, Up(Rm 1y,
Now put

Ag=H"(R™™Y), A, =L(R").
Then
Br VMR ) =4, , if O=1/mp.

Put u(@)=f(t,x) for t>0 if fe&. Clearly u(t)}»Trf in LP(IR”_I) as t—0.
Using Corollary 3.12.3 we see that

ITef 1 4,,, < Cmax (2 7u(t)]| Ly 112U O g4, -
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But the right hand side is equivalent to the norm of f in H}(IR"). Thus (2) follows.
It remains to prove the theorem for 1/p<s<1. By the embedding theorem
we know that B”(R)c L (R), so that

TrfCN<SCISC X s wy

forall x’e R"~!. Integrating over IR*~! and using Theorem 6.2.5 and Minkowski’s
inequality we deduce that

||Trf”1.,,(nn~ x)SCHf”B;,"; (R) >
i.e.
3) Tr: BLP(R™)— L (R"™Y).

Using (1) and Theorem 6.4.5 this implies the theorem for B} (R"), s>1/p.
By Theorem 6.4.4 we know that

Hy(R")cB; (R"), 2<p<w.
Thus the theorem for H;(RR") follows from what we have already proved in the
case 2<p<o0.

From what we have already proved we also see that

Tr: HS(R" - B VAR, s5o>1/2,
Tr: H. (R")-BL P (R,  1<p,<oo.

Thus by Theorem 6.4.5 (Formula (6) and (7)),

@) Tr: Hy(R")— B, VAR 1),
1 1-6 6

if —=——+—, s=(1-0)s,+0.
p 2 p

But if 1<p<2, s>1/p are given we can find p,, (1<p, <p) so that s,, given by
the relations above, satisfies s,> 1/2. Thus (4) holds assoonas 1<p<2,s>1/p. 0O

6.7. Interpolation of Semi-Groups of Operators

A reader who is not familiar with semi-groups of operators might substitute the
group of translations in IR” for the general semi-group in a first reading. In fact,
the group of translations in R” is, in a way, the generating case for the semi-
group approach. After the definitions, we give an example to illustrate what semi-
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groups comprise. Together with an interpolation result, we use this example to
obtain yet another characterization of the Besov spaces B, .

Let A be a Banach space, and let {G(t)} (>0) be a family of bounded linear
operators from A to A. Then we shall say that {G(t)} is an equi-bounded, strongly
continuous semi-group of operators on A if the following three conditions hold:

() G(s+t)a=G(s)(G(t)a)  (5,t>0,aeA),
(i) [G(®)all ;<M lal 4 (t>0,aeA),
(iii) lim, ., ,||G(t)a—al =0 (acA).

Routine verifications show that t—G(t)a is a strongly continuous function
onR,.
The infinitesimal generator A of the semi-group {G(t)} is defined by the formula

lim, ., ; ot "(G(t)a—a)—Aa] ,=0.

The domain D(A) of A is obviously the space of all aeAd, such that
lim,, , ot~ '(G(tJa—a) exists. Also, A is a linear operator, and, in non-trivial
cases, it is not bounded.

Example: We let A stand for any space among L, (R" dx) (1<p<oo) or the
closure of & in L, the latter space consisting of all continuous functions which
tend to zero at infinity.
H denotes an infinitely differentiable positive function on R™\ {0}, which is
positively homogeneous of order m>0, i.e. H(t&)=[t["H({)} (teR, £EeR™{0}).
The family {G(r)}, defined by

Gtya=F {exp(—tH)Fa} (ae¥,t>0),

is a semi-group on A. To prove this, we have to verify that G(t) are operators
from A to A, and that the conditions (i)—(iii) are satisfied. First, we note that
exp(—tH)eM, (1<p< o, t>0), with a norm which does not depend on ¢, by
Theorem 6.1.3, Lemma 6.1.5 and the homogeneity of H (cf. Exercise 4). It follows
that G(t) may be extended to a mapping from 4 to A4 (sic), and that (ii) holds,
since its domain is dense in A. Clearly, (i) is also satisfied. To prove (iii), take
ae . Then we have

G(tya—a= [, G(s)F ~(—HF a)ds
and thus, using (ii), we obtain
IG(a—al ;<M-t-|F (HF )| ,~0 (t—+0).

Sirce & is dense in A, (iii) follows by using (ii) once more.
It is clear that the infinitesimal generator of G(t) is the operator A, defined by

Aa=—-F Y{HFa} (ac¥).
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More exactly, the infinitesimal generator of G(t) is the closure in 4 of the opera-
tor A. This is a consequence of the next lemma (see below).

As particular cases of this example, we mention H(&)=|¢|* and H(&)=|&|.
If H(&)=|¢|?, the semi-group is given by

G{t)a(x)=(4nt) "2 [gnexp(—|u|?/4t) a(x —u)du

(see Butzer and Behrens [1] for details). This integral is usually called the Gauss-
Weierstrass singular integral. If H(£)=|£| the semi-group is defined by means
of a convolution with the Poisson kernel for the half-space R"x IR :

G()a(x)=n""* V2 ((n+1)/2) fgnt(t* +u]?)~"* V2 a(x —u)du

(see Butzer and Behrens [1]).
Now we return to the general situation. The following lemma displays fre-
quently used properties.

6.7.2. Lemma. Let {G(t)} be an equi-bounded, strongly continuous semi-group of

operators on A, with A as its infinitesimal generator. Then A is closed, and its do-
main D(A) is a Banach space in the graph norm

lallpy=lall 4+ 4al, (aeD(A)).
In addition, if aeD(A) then G(t)aeD(A), and
) d(G(t)a)/dt = AG(t)a=G(1) Aa,
2) G(t)a—a= |, G(s) Aads.
Finally, D(A) is dense in A.

Proof: Formula (1) follows at once from the definitions. (2) follows from (1),
since if a’'e A’ then
{G(t)a—a,a’y=[4(d{G(s)a, a'/ds)ds = [, {G(s)Aa, a>ds
={[4 G(s)Aads, a’y .
To prove the density of D(A) in 4, take ae A. Then we have, by Formula (2),
that
h=YG(h)—1) [, G(s)ads=h"" [{,(G(s + h)— G(s))ads
=h~' (" G(o)ad — [}, G(o)ade)=h~({}** G(o)ads — [*, G(s)ads)
=h"1{L G(s)(G(t)—1)ads—>(G()~1)a in A
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as h—+0. Thus {},G(s)adse D(A). But
t7 i G(s)ads—a in A as t—+0,
and the density follows.
It remains to prove that A is closed. Assume therefore that a,—a in 4 and
Aa,—b in A as n—+oo. Then we have
G(t)a,—a,= [, G(s)Aa,ds—>[,G(s)bds iIn A (n—>+0).
It follows that
G(tya—a= [, G(s)bds,

and thus aeD(A) and Aa=b. Consequently, A is closed and, with the graph
norm, D(A) is a Banach space. [

We shall now give a characterization of the interpolation space (4, D(A)),, -
This is the main result of this section.

6.7.3. Theorem. Let {G(t)} be an equi-bounded, strongly continuous semi-group
of operators on A, with infinitesimal generator A. Then we have

(3) K(t, a; A, D(A))~wft, a) +min(l, ) |lal, (aed),

where
oft, a)=sup, . [ G(s)a—all 4,

and also

4 lall . pcane, ,~ Nall 4+ (I3 (¢~ Pz, @))Pde/n)!? - (0<f<1,1<p<0).
If A is reflexive we have

(%) fall D(A)~Sup,t_1K(t, a; A, D(A)y,

or, equivalently, (A, D(A)); = D(A).

Proof: (4) is clearly a consequence of (3). To prove (3) let a=a,+a,, where
a,e A and a,eD(A). Then

at, a)=sup, .|| G(s)a—a| 4 <sup, ., [G(s)ag —aoll 4

+sup, ., IG(s)a; —a,| ;<M +1)la,ll ,+ Mtl[Aa ]l ,,

by (ili) and (2). Noting that min(1, 7} ja] < K(t, a), we have one half of (3). For
the other half of (3), we have to find a suitable decomposition a=a,+a,
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(ape A, a,eD(A)) ofa. If t=1 then K(t, a)=lla]| , (see the proof of Theorem 3.4.1)
and the inequality follows. If O0<t<1 we put

a,=t""'{; G(s)ads,

a,=a—a, .
Then, as in the proof of Lemma 6.7.2, a,eD(A), and

K(t, )< laoll s+ tllall peay
=t [o(G(s)a—a)ds]|| 4+ || [, G(s)ads]| 4, + | A f G(s)ads|l 4
<olt,a)+M-tlla] 4+ |G(t)a—a| ;< Clwlt, a)+tlall ),

which completes the proof of (3).

There remains the proof of (5). Assume therefore that A4 is reflexive. Then
D(A) is reflexive too, since it may be identified with the closed subspace
{(a, Aa)|ae D(A)} of Ax A, and Ax A is reflexive. One half of (5) is obvious,
since ¢~ 'K(t, a)< [|al p 4

For the other half of (5), we choose a, with sup,t™'K(t, a) finite, and a de-
composition a=ag(t)+a,(t} of a, such that

”ao(t)‘|A+tHa1(t)“D(A):O(t) (t—+0).

Then, since D(A) is reflexive and its closed unit ball is accordingly weakly com-
pact, there is a subsequence (b)7, of the sequence (a,(1/m));Z, which con-
verges weakly in D(A) to an element b. But a,(t)=a—ay(t)—a in A4 (t—+0),
and thus b,—a weakly in 4 (n— + o). Since D(A) is dense in A4, it follows that
a=bh, and thus ae D{A). This completes the proof of (5). 0

As an application of the previous theorem, consider the translation group,
defined by G(t)a(x)=a(x+t) on L, (R,dx) (1<p<co). Then the infinitesimal

generator is given by Aa(x)=a'(x) and w(t, a)=sup,_,||4.al/,. From Theorem
6.2.5, we infer that (equivalent norms)

(L, D(A))y,,=B%, (0<6<1,1<p<c0,1<g<0).

An analogous result holds for the general semi-groups we considered in the
example at the beginning of this section. This result gives another characteriza-
tion of the Besov spaces.

6.7.4. Theorem. Let {G(2)} and A be as in Example 6.7.1. Then, with s=0m,

(AsD(A))O,qu;q (0<6<1,1<P,q<00).
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Proof: Let aeB;,, and let y and ¢, be defined as in Section 6.2. As in the proof
of Theorem 6.2.5, we see that

Ay *al ;< Cllyr*al,,
lAg*all ;< C2™ g al .

Thus by Lemma 6.7.2 we obtain

o(t, a)=sup, ., [G(s)a—all 4

< C(min(1, 1) [l *al| ,+ Y » ,min(1, 27) @, *all ).
For s=0m we conclude that
lall 4, pane,, S Cllall o+ (J5 (¢~ Pz, @) dt/t) ') < Cllal},,

by Theorem 6.7.3 and the fact that Bj, CH =L,.
Next, we assume that ae(A, D(A)),,,q We have the estimates

l@x*al,=I1F = {@y-(exp(— HR™*) =17 'F(G2™™a~a)}l,
<Co2™™ a) (k=1),
¥ *ai,<Clall,=Clal 4,

since @(27*-)(exp(—H(27*-))—1)"'eM, (1<p< ), with norm independent of
k. These estimates imply that
lals, <C(lall 4+ (- 1 (2% ™™, a)) ") < Cllallu, piaye, o »

by Theorem 6.7.3. [

6.8. Exercises

1. Give an example to show that the conclusion in the Mihlin multiplier theo-
rem (6.1.6) does not remain valid for p=1.

2. State and prove the analogue of M. Riesz's theorem on conjugate functions
with IR” instead of the torus T. (See Exercise 4 in Chapter 1.) (Use, €. g, the Riesz
transforms ;/|¢| (i=1,2,...,n).)

3. Prove that if, for all integers k and all o with |a|< L for some integer L>n/2,

[élla[ HDap(é)HL(HO HyS i for 2k_1<lél<2k+l
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and if Y ® a,<co, then peM,(H,, H,) and

Tl <CE20a,

4. (Lofstrom [2]). Let g be an infinitely differentiable function on (0, ), such
that for j=0,1,2,...

9w < Cju~/minu’,u™"),  ue(0,c0)

where a>0, f>0. Moreover, let H be an infinitely differentiable and positive
function on R™\ {0}, which is positively homogeneous of order m>0. Put

p(&)=g(H(S))
and prove, using the previous exercise, that peM,.

The following four exercises indicate other possible ways of defining the
spaces B, and H;,.

5. Prove that (fe%)

Lflp+ 2a = ID* fl~ Lia<w 1 D* £,
~|!f”p+2j=1“aNf/axpr (1<p<c0).

6. (Peetre [32]). Let the sequence (), of functions ¥, be such that

Suppl//vc[_z—v’z_v]3
WPx)I<C2M ) (7=0,1,2,..),
frRXW(x)dx=0 (i=0,1,...,k~1),
e~ ¥ x)=0(x) .

Prove that (fe %)
L5~ (2 - @, xf )04, (seR,0<p, g< o)

where the definition of |- ﬂf,q is the obvious extension to 0 <p, g< oo of that in 6.3.

Hint: Superpose sequences of the type ("), to get a sequence as in Lemma 6.1.7,
and conversely.

The following definition is essentially Besov's [1].
7. Let 0<s<1. Show that

={feS |11+ rallBl 144 f | )2 dR/ i) 8 < 0},
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where B, is defined in Section 2. State and prove an analogue for arbitrary
5s>0.

Hint: (A, (Vi< DA ,={ Vo= 1(4, D(AT)),, ,, see Section 9.

8. (Taibleson [1]). Assume that 0<s<1. Let u=u(x, t) be the solution of the
initial value problem:

{(Vu/aﬂ:—Au (t>0),
u=f (t=0).

Prove that
B, ,={fe¥| feL, (f5(t =l aujat| Ydi/t)'" < o0},
where B}, is to be interpreted as in Section 2 (Cf. Exercise 24.)

9. Prove that
@) B)f<L,,
(b) B, is a Banach algebra under pointwise multiplication if s> n/p,

(¢) B}, is a Banach algebra under pointwise multiplication if s>n/p.
What can you prove about H}?

10. Show that if feBr? then (3, .. [f(x)I")!? is finite, where Z denotes the set
of all integers. (Cf. Peetre [32].)

Hint: Interpolate between H} and L. Use B)f =(H}, L), ,-

11. (“Riemann’s second theorem”: see Zygmund [1]). Consider
(X)) =Yz 0™,

where a,=0(1). Put
F(x)=Y,:0a,n 2™

Show that FeB. . Generalize to the case where
F(x)=) ,40a,n %™,

Hint: Write F=F,+F, with Fo=) - a,n" %"

12. (a) Let fe% and assume that ||f}'|j,q<oo (see 6.3). Show that

Df=3 . Doxf (in )



164 6. Interpolation of Sobolev and Besov Spaces

for all @ with |«|>s—n/p. (This obviously means that f=) __@.*f (in &)
if f is taken modulo polynomials of degree at most [s—n/p].) Moreover, if g=1,
show that

Df=3%2 _ D'¢xf (in¥)
for all « with |a|=s—n/p.

(b) State and prove the analoguous result for || -ﬂ;.

13. Verify that Y *_ @, *f converges in FI;"+H;‘ if feB;q, So<s<s;. (This is
a part of the proof of Theorem 6.3.1.)

14. Show that spaces ff; and Bf,q are not, in contrast to Hj;, and B, ,, monotone
in s.

15. Show that
By, =L,+B, (s<0,1<p,q<),
H=L,+H5 (s<0,1<p<0).
Hint: Cf. the proof of Theorem 6.3.2.

There is a classical result by Bernstein [2] concerning absolutely convergent
Fourier series. (See Zygmund [1].) The following three exercises extend Bern-
stein’s result. (For applications, see Peetre [4] (summability of Fourier integrals)
and Lofstrom [2] (approximation).)

16. Prove that
F B2cL,.

Verify that this implies the inclusion
BiPcM,.

17. Show that

(M, M, ) =M,

po’

where 1/p=(1—-60)/p,+6p,, 1<py, p; <0 and 0<f<1. Deduce from this the
inclusion

(Mpoa Mpl)o,ch s

p

where 1/g>1/2—1/p and 2<g< 0.

18. Peetre [4]. Prove that if peB;‘/f then peM,, provided that 1/g>1/p—1/2
and 2<g< 0.



6.8. Exercises 165
Hint: Use Exercise 16 and 17.

19. Show that if p satisfies the conditions in the Mihlin multiplier theorem
(6.1.6) then

ﬁ_lp*:B;q—»B;q (seR,1<p< o0, 1<g< ).

20. (Brenner-Thomée-Wahlbin [1]). Let G be a given function with G being
infinitely differentiable with compact support on [ —1,1] and G(0)=1. Put

G, () =22 1exp(i2/x)2 77" G(x) ,
H, (x)=1x[*(log(1/x)) "*G(x).
Find necessary and sufficient conditions for G, ,eB}, and H, ,€ B}, respectively.

21. Show that the inclusions (Theorem 6.2.4)
B, cH,=B,, (seR,1<p<w0)

are the best possible in their dependence on the second lower index. (This means
that 1 and oo cannot be replaced with a ¢, ¢>1 and g <o respectively.)

Hint: Use Exercise 20.

22. Show that the inclusions (Theorem 6.4.4)

B, ,cH,<B;, (seR, 1<p<2),

B,,cH,cB;, (seR,2<p<o0)

cannot be improved, i.e. the second lower index p and 2 in the first line cannot
be replaced with a g, ¢g>p and g<2 respectively.

Hint: See Exercise 20.
23. Show that the inclusions (Theorem 4.7.1)
Ay cApcd,, (0<b0<1),

where A4 is a compatible Banach couple, cannot be improved, i.e. 1 and o cannot,
in general, be replaced with a ¢, g>1 and g <o respectively.

Hint: Use Exercise 22.
24. (Taibleson [1]). Put

(GO ) =n"* D2((n+1)/2) fgat(t? +1y1) "2 f(x = y)dy
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and define the space A(x; p, q) for >0 by means of the norm

1f o p,g=(JEEE 107G 0) f /067 )2t /1)1,
where @ is the smallest integer >a. Show that
Ala; p,q)=B5, (equivalent norms) .

25. Let G(1) be defined as in the previous exercise and let y be a given function
such that ye CP([—1,1]), x(0)=1. Put

(L N ) =GO ) x), 0O<i<oo.
Prove that

IDEDYUL , 1) ), <Cmin(e™ ™| f1i,, [ fl71)
if u+|aj=m and 1<p<oo. Deduce that
I|L+fl!n;,p(m+1><Cllfi|3gp— wwny, mM=1,2,....

26. Put

git,x) if t=0, xeR?,

t =
(Fa)(t.) {z;tla,g(—ﬁ,x), if 1<0, xeR",

and choose q,,...,ay so that
F: Hy(RY - Hy(R"™ 1)

for m=0,1,...,N. Then put L=FL_, where L, is as in the previous exercise.
Show that TrLf=f and

L: B}, VP(IR")— H3(R"* 1)

L: B 'W(R")—B; (R"* 1),
for 1<p<o, 1<g< o0 and s>1.
27. (a) Let G be a strongly continuous, equi-bounded semi-group on a Banach
space A and let A be the infinitesimal generator of G. Let A™ be the domain of
A™ and, for m=1,2,..., put

Pults @)=t "™sup, . o<,||G(s)a— Y24 t"A"a/nl| .

Prove that there is a positive constant C,,>0 such that

C,. 'K(t,a; A", AM < p,(t, a)+min(1, 1) ||al| gm-
<C,K(t,a; A™™ 1, 4™).
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(b) (Peetre [10]). Put
W,(t, @) = Sup, <5<, IG(s) =)™ ],

and prove that there is a positive constant C,, such that
C,'K(t, a; A, A< w,(t, a)+min(1, 1) |a| , < C,K(t, a; A, A™).

28. (a) (Butzer-Berens [1]). An equi-bounded, strongly continuous semi-group
G with infinitesimal generator A is said to be holomorphic if G(t)ae D(A) for all a
and

[4G(®)al <Ct™'||af, ¢>0.

Prove that the space (4, A™),,, 0<0<1, is given by the condition
(5@ A"G()al ¥ de/t)? < 0

where O<a<m, a/m=40.

(b) Prove that the semi-groups on L(IR") discussed in Section 6.7 are holo-
morphic.

29. (Triebel [3]). Let F5, be the space of all fe.%" such that f has the representa-
tion f= z of; where (f)seL, ) and suppf c{&271LE <2 for
j=1,2, ..., supp fy = {¢:|£|<2}. The norm on F i

“f“Ff,q: inff:ij 1o L8 -
Prove that
]|f”1~"§,q~ (@;* )G L s> (po=¥).

Moreover, show that (F;)=F,; if 1<p,q<ow and that F;,=H;. Prove
also that

(F3%0, P31 )p.g=B:

pgo> * pq./8 pPa’
'S
(Fo =B,,,
—— Es
( poq’ pxq)o 14 qu ’

(Fe0 =F

pq’

podo’ pm)e 4

poqo* qu)[fﬂ
for suitable values of the parameters.

30. Let P=P(D) be an elliptic partial differential operator of order m with
constant coefficients in R" such that P(t&)=t"P(¢), t>0, {eR” Show that

(fe#) _
17T m~1PO)f T eR 1<p<co),

Ifsim~IPD) S5, (seR,1<p<o0,1<g< ).

(Cf. Hormander [2], for example.)
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31. Show that the following inequality of Gagliardo-Nirenberg type holds: (fe.%”)

IEfL,<CHIP LA f118, (50, 5,€R, 1<pg, py <0, 0<f<1)
where

s=(1—0)so+0s, and (1—-0)/p,+6/p,=1/p.
In Exercise 1.6.14 we defined the space H ,(Tr), by means of the norm

”f”}l,,ar): sup, « l(hlf(re"e)l"df?)”" .

Similarly, H (R) is the space of all functions holomorphic in the upper half-plane
Imz>0 such that

11 11,0y = SUPy o (i | f (6 + iy)[Pdx) P < 00 .

There are of course n-dimensional versions of these spaces. The following three
exercises are meant to point out some recent extensions of classical results to
the case n>1.

32. (Fefferman-Riviere-Sagher [1]). Let T be a linear operator, such that

T:(H,, H,)~(L,,L,,).

po?
Prove that

T:H,—L,

if
1p=(1-6)/po+0/p, 1a=(1-06)/q0+6/4,,
0<0<1, O0<py,p;<o0, 1<qq,4q,<®, p<q.

Hint: Use Formula (2) in Section 9.

33. (Peetre [28]). Prove that if feH, (0<p<2) then

(el Z [P 1L =2~ PdE) P < 00 .

Hint: Use the fact that feH, (0<p<1) implies [# f(&)|<C"'/P~" and 1.4.1.

34. (Peetre [28]). Prove that (¢>0,0<p<1)
I"H,~H,

provided that 1/g=1/p—¢/n>0, p>0.
Hint: Show that IE:HI,—>I'3;00 if 1/g=1/p+(s—¢)/n, and that BgPCHq.



6.9. Notes and Comment 169

35. (Mitjagin-Semenov, personal communication). Consider the spaces C/,

consisting of j times continuously differentiable real-valued functions on the

interval [ —1,1]. The (semi-) norm is given by |{f];=sup,|D’f(x)| (feC)).
Define the family of operators T, (0<e<1) by the formula

X

T/ =, m(f(y)—f(o))dy'

Use these operators to show that C' is not an interpolation space with re-
spect to the couple (C°, C?). (Cf. Section 6.9 for additional results.)

Hint: Show that T,:(C° C*)—(C° C?) with norms independent of ¢, but that
(T.f)(0)— +co as e—+0, where f(x)=(x*>+¢%)"/? although |f,|;<C, j=0,2,
for all ¢ (0<e<1).

69. Notes and Comment

The study of Sobolev and Besov spaces has its roots in questions concerning
the regularity of solutions of elliptic partial differential equations. Many of the
results in this chapter are due to Hardy and Littlewood in the case n=1, see
Hardy-Littlewood-Poélya [1]. Another early result is the embedding theorem by
Sobolev [1] discussed in 6.5. These works were published before 1940. Sobolev [1]
defined spaces WZ involving weak derivatives of integral order. There are several
possibilities of extending the definition to cover the case of fractional derivatives
too. Besov [1] used moduli of continuity (see also Nikolski [1]—a survey article),
and Taibleson [1] the solution to an initial value problem for the definition of
B;,. These definitions are essentially equivalent to the one given in Section2
(see the exercises and Theorem 6.2.5). The spaces Hj, (p#2) were introduced by
several authors around 1960. For p=2 they are much older. In contrast to the
spaces B}, (p#2), the spaces H), are equivalent to Sobolev's spaces W, for non-
negative integral values of s and for 1 <p< oo (Theorem 6.2.3 and the exercises).
Other ways of defining B, are, e.g., via interpolation:
By, =(Hy, Hy\o g

as in Theorem 6.2.4, or via approximation as in Thedrem 7.4.2. The latter ap-
proach is found in Nikolski [1] and is based on the Jackson and Bernstein
inequalities. As we have already remarked, the present definition of the spaces
B:_ in Section 2 is due to Peetre [5].Cf. Nikolski-Lions-Lizorkin [1].

Applications of the results of this and the previous chapter to analysis, e.g.,
partial differential equations and harmonic analysis, can be found in, e.g,
Magenes [1] and in Peetre [2,4,7,8], which also contain many references.
Cf. 6.8 and 7.6 for additional references.
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We remark here that there is a collection of twelve open problems under the
heading “Problems in interpolation of operations and applications [—II” in
Notices Amer. Math. Soc. 22, 124—126 (1975); ibid. 199—200.

We note that the results in this chapter also hold, mutatis mutandis, when
R” is replaced by T”", the n-dimensional torus. (Cf. 7.5.)

Artola [1] proves the following interpolation result after Lions [1]: Let 4
be a compatible Banach couple with 4(4) dense in both 4, and A,. Assume that
Mihlir's multiplier theorem holds in L,(A) (1<p;,i=0,1). If ueL,(A,) and
D™ueL, (A,) then DjueLp(Am), where 0=j/m, 1/p=(1—-6)/p,+0p, and 0 < <1.
We do not know whether there is a version with the real interpolation method.

Zafran [1] has given an example which shows that the answer is ‘no’ to the
following question posed by E.M. Stein: Let pe S’ be such that

Flp*:L,—~L,,.

Does it follow that peM,? This negative answer is evidently important for a
consideration of the relation between the Riesz-Thorin and the Marcinkiewicz
theorems, or between the complex and the real methods.

Interpolation of the Hardy spaces H,, it may be argued, deserves a chapter
of its own. However, we think that a summary of the main results, with references,
should be sufficient. Our reason for this is that the interpolation techniques
which have been used are displayed in the previous chapters, in particular in 1.6.

The classical approach to H ,-spaces is via complex function theory (cf.
Duren 1] and Zygmund [1] for the one-dimensional case, and Stein [2] for
the n-dimensional case). This approach was complemented in 1972 by a real
variable characterization (0 <p<1) introduced by Fefferman-Stein [1]. Another
important result of Fefferman-Stein [1] is that the dual space of H, is the space
BMO, consisting of functions of “bounded mean oscillation”.

The first results concerning interpolation of H -spaces were obtained by
Thorin [2] in 1948 and by Salem-Zygmund [1]. (Cf. 1.6 and 1.7.) Using the
results of Fefferman-Stein [1], it is possible to obtain the following theorems:

1) (H,L)g=H, (1/p=1-0,0<0<1),

@ (Hppo Hy )o,p=H, (1/p=(1-0)/po+6/p;, 0<po,p;<0,0<0<1)

po’

where the functions in H, depend on n(>1) variables. (1) is found in Fefferman-
Stein [1] and (2) in Fefferman-Riviére-Sagher [1]. Some applications are given
as exercises. A general reference, for the results about H,-spaces mentioned
above, and containing many references, is Peetre [28].

The spaces B, with 0<p<1 have been discussed by Peetre [32]. (Cf. 7.6 for
details.) These spaces appear also in Exercise 35 concerned with H -spaces.
Connected with this is the following result by Peetre [31]: Consider the real line
R, and let peS'. Assume that

p*:L,~L,
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Jor some p, 0<p<1. Then p is a discrete measure of the form

p= ané(x——xa) s

where 6 is the Dirac measure, (x,) is an at most countably infinite family of distinct
points in R and Zlca]” is finite.

If, instead of L, the Lorentz spaces L,, are used in the definition of B,
the spaces are denoted by B}, i.e.

Byy= (S8 01, + (T 1241 @S 11, ' <0}
(s€R, 1<p, g, r< o).

Inclusion and interpolation theorems for these spaces are found in Peetre [9]
for example.

An attempt to unify the theory of some different spaces of functions subject
to certain growth restrictions is the construction of the spaces L, ,,

L, ;={f measurable in open Q<=R"|sup,  inf,({s  olf(x)—1/Pdx)'""<Cr*},

going back to Morrey [1]. Interpolation of (a generalization of) these spaces
have been treated by Spanne [1] (see also Peetre [12]). In particular, Spanne [1]
treats simultaneously interpolation of L -, C*- and L, ;-spaces. (Cf. also Miranda
[1], who applies complex methods, and Brudnyi [1].)

Another notion has been proposed by Peetre [5] and investigated by Triebel
[3], viz. spaces of Lizorkin type:

B ={ 1S 11t@ux Ny, i, <0}
Note that

By, =S| I(l@*f ), <0}

(Cf. also Peetre [30], who treats the case 0<p,q<co and proves a multiplier
theorem analogous to Mihlin's. Another definition is found in Exercise 29.)

Quite recently, B.S. Mitjagin has personally communicated a result, which
he found together with E.M. Semenov, viz. C' is not an interpolation space
with respect to the couple (C°, C?) (cf. Exercise 35). He also states that they have
proved that to any pair of integers k, n with 0 <k <n, there exists an operator T,
such that (C/=CJ(SY)

T:Ci—>C (0<gj<n, j#k),
T(CH ez C*.

Moreover, the same statement holds with W(S') instead of C/(S!).

6.9.1. The outstanding result here is, of course, the Mihlin multiplier theorem.
This theorem appeared in 1939 in Marcinkiewicz [2] involving Fourier series
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for functions on the n-dimensional torus T". His assumptions are the analogues
of those in Theorem 6.1.6. Calderon-Zygmund [1] give another version: suf-
ficient conditions for the L -continuity of convolution with certain singular
kernels in R". The Calderon-Zygmund theorem is an important result in the
theory of partial differential equations. In contrast to Marcinkiewicz, Calderén-
Zygmund use real variable methods. (In fact, our proof is essentially that of
Calder6n-Zygmund, in the version of Hormander [1].) The real variable ap-
proach is based on their covering lemma (6.1.8). Mihlin [1] extends Marcinkie-
wicz' result from T" to R”. Hérmander [1] then presents a theorem containing
both the Mihlin and the Calderon-Zygmund results. In particular, he makes
the assumption expressed by Formula (19), and his proof is founded on the
ideas in Calderon-Zygmund [1]. Hérmander also treats the applications to
partial differential equations. Several extensions to the vector-valued case have
been made (see, e.g., Triebel [3]).

Let us point to the fundamental role of covering lemmas in the present proof
of the Mihlin multiplier theorem. (Cf. also Stein [2] for a discussion of covering
lemmas in this context.) Firstly, we invoked the Calderén-Zygmund covering
lemma. Secondly, in the proof of this lemma, we referred to the Lebesgue dif-
ferentiation theorem. For the proof of the latter theorem, another covering lemma
is used, e.g., F.RiesZs “sunrise in the mountains” lemma (cf. Riesz-Nagy [1]).
However, Riesz’s lemma is a special case of the Calderon-Zygmund lemma.

Theorem 6.1.3 is found in Hormander [1].

As a general reference for this section, we mention Stein [2]. (See Section 1.7
for additional references.)

6.9.2. The idea of using a sequence (¢,)” , for the definition of the Besov spaces
is taken from Peetre [5]. In the case p=g=2, this idea has also been used by
Hoérmander [2], and, in the general case, by Lizorkin, see Nikolski [1]. (Cf.
also Shapiro [2].)

Let us also point out here that not all the alternative definitions are valid
as such when 1<p< 0. This is a consequence of our recourse to the Mihlin
‘multiplier theorem for the proofs of some of those statements. (Cf. the exercises
and Nikolski-Lions-Lizorkin [1].)

6.9.3. The presentation of this section caused a dilemma. Either we had to do
everything in tiresome detail, using quotient spaces etc. (cf. Exercise 12), or
present the results with semi-norms, as they now stand. The drawback of the
latter alternative is that we have not treated the real method in the case of semi-
normed spaces. However, it is e¢ssentially the equivalence theorem that is needed
here. A proof of this can be found in Gustavsson [1], and it exhibits no un-
expected features. In fact, the homogeneous spaces H3 and B, are constructed
mostly for convenience. The philosophy is: Anything that is true for the homo-
geneous spaces is true, mutatis mutandis, also for the inhomogeneous spaces,
and it is technically easier to work in the homogeneous case.

6.9.4. The results given here for the real method are due to Lions-Peetre [1]
and to Peetre [5], and those given for the complex method to Calderén [2].
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Note that Formula (4) and Formula (7) of Theorem 6.4.5 indicate that the func-
tors C, and K, , are not the same (cf. Exercise 22).

6.9.5. In 1938, Sobolev [1] proved a first version of Theorem 6.5.1. See also
Schwartz [1].
The inclusions in Theorem 6.5.1 cannot be improved; cf. Exercise 20—23.

6.9.6. As we pointed out in 3.14, the trace theorems were the forerunners of
the abstract real interpolation method. These early results are due to Lions [1].
Subsequently, Lions-Peetre [1] developed the real method.

Recently, Jawerth [1] has proved trace theorems in the case 0<p<1, using
direct methods.

6.9.7. For an introduction to the theory of semi-groups, see Butzer-Behrens [1].
The potential to use interpolation, with the real method, rests on Theorem 6.7.3,
Formula (3), describing the functional K(t, a; 4, D(A)). The interpolation results
are due to Lions [1] (see Lions-Peetre [1] and Peetre [10]). In Peetre [10], the
couples (A, D(A™), (4,()i= D(A™) and (i ,(A4, D(A7)) (m>1) are considered.
In particular, if the semi-groups commute,

(A, (Vo= 1 DA, = (Vo= 1 (A4, D(AY)),,  (0<O<1,1<p<c0).

(Cf. Section 3.14 and the references given there.) However, Grisvard [1] proves
that

(A, D(T) N A1)e,p=(A0, D(T))o,pﬁ('Ao’ A1)o,p O<bf<1,1<p<0)

where A4 is a Banach couple, 4, = A, and D(T) is the domain of the closed opera-
tor T contained in 4,, under certain restrictions on the resolvent of T and on 4,;
in particular A, must be invariant. If A, =D(U), the domain of another closed
operator U, the result holds under conditions on T and U, which do not imply
commutativity. (Cf. also Peetre [15, 27].)



Chapter 7

Applications to Approximation Theory

There is a close connection between the classical approximation theory and the
theory of interpolation spaces. We indicated this in 1.5. We discuss the link in
more detail in the first two sections. In the first section, the main result is that
every “approximation space” is a real interpolation space. The theorem makes
the K-method (Chapter 3) available in approximation theory. This is then
utilized in Section 2 to obtain, i.a., a classical theorem (of Jackson and Bern-
stein type; see 1.5) concerning the best approximation of functions in L, (R")
(1<p< o) by entire functions of exponential type. In the following sections,
3 and 4, we prove other approximation theorems, using interpolation techniques
developed in Chapter 3, 5 and 6. In particular, we treat approximation of oper-
ators by operators of finite rank, and approximation of differential operators
by difference operators. Additional applications are indicated in Section 7.5
and 7.6, e.g., approximation by spline functions.

7.1. Approximation Spaces

The basic notion of classical approximation theory is the concept of best ap-
proximation E(t,a) to a given function a. We now extend this notion to a more

general situation.
We consider the category of all quasi-normed Abelian groups (cf. 3.10).
Given a couple 4=(4,, A;) and an element aeX(4) we put

E(t,a)=E(t, a; 4) =infj,g < la—aoll 4, 0<t<oc0.

The E-functional just defined does not have any norm property. However,
it has the following sub-additivity property.

7.1.1. Lemma. Assume that A; is c;-normed. Then E(t, a) is a decreasing function
of t and

E(t, a+b)<c(E(et/cy, a)+ E(1 +€)t/co, b))

Jor 0<e<1. Moreover if E(t,a)=0 for all t>0 then a=0.



7.1. Approximation Spaces 175

In order to make the notation less cumbersome, the reader could put
co=cy=1 in a first reading.

Proof : 1If {agll 4,<et/co and |[bolf 4, < (1 —¢)t/c, then |ay+ by 4, <t Since
@+b)—(ao+bo)l 4, <cillla—agl 4, +11b—boll 4,),

we get the first part of the lemma. In order to prove the second part, we note
that if E(t,a)=0 for all ¢ we can find a,e4,,n=1,2,... such that lla—a,|,—0
and |a,| ,—0 as n—oo. Thus a,—0 in 4, and a,—a in A,. But 4, and A,
are compatible which implies that there is a Hausdorff topological vector space
&/ containing 4, and A4,. Thus 4,—0 and a,—a in &/ and hence a=0. @

We now investigate the connection between the K- and E-functionals. We
shall use the concept of the Gagliardo set I, defined as follows. Let 4 be a given
couple of quasi-normed Abelian groups. To every element aeX(4) we associate
a plane set, the Gagliardo set of a, defined as the set of all vectors x=(x,, x,)e R?
such that a=a,+a,, for some a,e A4, and a,eA4,, with

”ao“,«to<xo’ lallg, <x;.

This set will be denoted by I'(a) or I'(a; A). In general I'(a) is not convex (cf. 7.1.4
below). If 4;is ¢ -normed we have, however, the following sub-additivity property:

(Xo/Co> X1/c)ET(A),  (Vofcos yi/c)el(b) = x+yel(a+b).
It is also plain that
xel(a), x;<y;, = yel(a).
In terms of I'(a), we have

: Up_: 1
K (t, @) =inf, .oy (x5 +tx5) P =inf, . p, (5 + 1xD)1P,  0<p< oo,
E(t, a)=inf, org X, =10f  p X,

xo€t xo<t

where 0I'(a) denotes the boundary of I'(a). The second formula means that the
intersection of I'(a) with the line x,=t¢ is a half-line (closed or open) with end-
point (¢, E(t, @)). To put it in another way, dI'(a) is the graph of the function E(t,a)
completed, if need be, with vertical lines where E(t,a) is discontinuous. In par-
ticular,

(1) K(t, a)=inf(s" + t(E(s,a))")''", O<p<oco,

see Figure 4.
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X

(t,E(t,a))

I {a})

X
Xg=t 0

Fig. 4

By Formula (1) we can express the K -functional by means of the E-func-
tional. We shall now consider the converse question of expressing the E-func-
tional by means of the K -functional in the cases p=1 and p=oco.

7.1.2. Lemma. Given s>0, there is a t>0 such that

K (s,a)=t and E(t+0,a)<t/s<E{t-0,a),

where E(t+0,a)=limsup, _,,,E(t,a) and E(t—0,a)=liminf,,_,E(t,a). In
particular, if E(t) is continuous then K (t) is the inverse of t/E(t).

Proof: Clearly, max(x,,sx )=t represents, for x,>0 and x,>0, the finite
segments of the lines x,=t and x,=t/s, see Figure 5. By Formula (1), we have,
in addition,

K (s)=sinf max(t/s, E{1)).
These two remarks and an inspection of Figure 5 give the lemma. 10
7.1.3. Lemma. Let E*(t, a) be defined by the formula

E*(t,a)=sup,s~ Y(K(s,a)—1).
Then E*(t, a) is the greatest convex minorant of E and

EXt, )< E(t,a)<(1—g) 'E*et), O<e<l.
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Proof: Writing chI'(a) for the convex hull of I'(a), we note that

* . .
E (ta a) - lnfxeﬁchf(a)xl - 1nfxechl"(a)xl s

xo<1t xp<t

which follows at once from the definition of E*(t,a) and the above expression
for K,(t,a) in terms of I'(a). (In the expression for K,(t, @) we may clearly sub-
stitute chl'(a) for I'(a).) This representation of E*(t,a) gives the lemma. [

X

x,=t/s

(LE() X

|
I
|
!
]
!
|
|
i
I
]

xg=t %o
Fig. 5

7.1.4. Corollary. If A is a normed couple
E(t, a)=sup;s~ (K, (s,a)—1).

Proof: Clearly, I'(a) is convex if 4 is normed. Then E*(t,a)=E(t,a) by the
above proof. 10

We now give the definition of an approximation space.

7.1.5. Definition. Let A=(A,, A;) be a given compatible couple of quasi-normed
Abelian groups. The approximation space E,(A) is the space of all acZ(A) for
which

“a”aq;E=(p—a,q(E(t, a))< 0 .
Here we take O<oa<coo and 0<g<oo or 0<a<oo and q=co.
7.1.6. Lemma. Assume that A=(A,, A,) and that A; is c;-normed. Then

a'—’”anaq;E
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defines a c-norm on E,(A) with
c¢=2c, max{c%, ¢;)max(1,2~ "¥ymax(1,2*" ).

Proof: If |all,.g=0 we must have E(t,a)=0 for all ¢+ and hence a=0. By
Lemma 7.1.1 we also have

lla+ bl 5 < ¢y max (1,27 V0 (@ _ (E(et/cq, a))+ D _, JE(1—e)t/c;,b)).

—uq

Writing d=2c, max(c5, ¢;)max(1,2~ %) we see that
”a+b”aq;E<d(8_a”anaq;E_*_(i—8)_‘1”bnaq;E)‘

Choosing ¢ so that the two terms on the right hand side are equal we obtain
la+bll,ye<d(lalzis+ bl -

This gives the result. [

Next, we compare the approximation spaces E, (4) with the interpolation

spaces K, (A).

7.1.7. Theorem. Let A be a quasi-normed couple and put 6=1/(a+1), r=0q.
Then _ _
(E, (A=K, (A).

Proof: The norm of a in the space K, (A4) is equivalent to @, (K (s, a)) (see
3.11). Let us start with the case g=oc0. Then r=c0. Now we choose ¢ according
to Lemma 7.1.2. Then we get

(t°E(t, a))’ <s7°K (s, q),

which gives K, (4)=(E, (A))’. The converse inclusion is equally obvious,
since we have

sTK (s, < (E(t -0, a))’ < lall;

a,00;E ¢

In the case g<oo (and r< o), we integrate by parts and change variables,
writing s=1/E(t,a). Note that s%(K_(s,a)—~0 as s—0 or s—oo and that t*E(t,a)—0
as t—0 or t—oco. Thus

J§(s7°K ofs, @) ds/s~ =[S K (s, @) ds ™" = [35"dK (s, a)*
= [5(t/E(t, @)~ "d(t) ~ [2(*E(t, @)™ dt/t

which gives the result. [

As a consequence of the reiteration and power theorems, we obtain
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7.1.8. Theorem. If a=(1—-0)o,+0a, and ay#o, then

Ko, {Eaord A), Ey,, (AN =E, ((A),

0,70

and

®0, 0

(Eg A, 1(A): Ey, , (D) =E, (4),

where r=0q and B=(a, —a)/{a—oay) or, equivalently, 6=1/(f+1).

7.2. Approximation of Functions

In this section we determine the approximation space E, q(Z) for certain couples
A. We will get other proofs of some of the results of Chapter 5 and 6, thus
giving another interpretation of these results.

Let (U, ) be a measure space. We recall the definition of the space L,. The
quasi-norm on L, is

IfllLo=wn(suppf),

where f is measurable and its support, suppf, is any measurable set F such that
f=0 outside F and f#0 almost everywhere on F. We shall now find the value
Of E(t,f: LOa Loo)

7.2.1. Lemma. Let f* be the non-increasing rearrangement of f. Then
E(t,f; Lo, L) =f*®).

Proof : By definition Eft, f) is the infimum of all numbers of the form || f—g{ .,
where the y-measure of the support F of g is at most t. Now put j(x)=f(x) on
F and §(x)=0 outside F. Then ||f—gll,<[f—gl,- Next, we consider the
function

0 otherwise.

_J i fx)i>e,
ga‘(x)_

Writing t=sup{|f(x): x¢ F} we have suppg,<F. Thus p(suppg,)<t. Clearly
lf—g.l,<t and || f—gll,=7. Thus we see that

E(t, f)=inf,{| f—g,l »* n(suppg,)<t}.
But the right hand side is just the definition of f*(t). [

From Lemma 7.2.1 and Theorem 7.1.7 we get the following complement of
Theorem 5.2.1.
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7.2.2. Theorem. For any p>0 and q>0 we have
E, Lo Ly)=L,, (equal norms).
If 0=p/p+1) and r=0q we therefore have
Ko (Lo, Lp)=(L,).
7.2.3. Corollary. If 0=1/(+1), r=0q and 1/p=(1—06)/p,+0/p, then

E; (L,,L,)=(L,)"".

po?

The corollary is an immediate consequence of Theorem 7.1.8.

Next, we shall consider approximation spaces between L, (1<p<o0) and
the space &, of all entire functions in L, of exponential type. Thus &, consists
of all functlons feL, for which f has compact support. Let us write

I/ lls=sup{|¢l: /(&)#0}.

The space &, becomes a quasi-normed (1-normed) vector space if we introduce
the functional

I e, =S, +1flle

We shall make use of the following classical inequalities: (N=0,1,2,...)
6] Et,f;8, L)<Cyt ™M fluy, (Jackson),

@ 1/ 1y <CyISUZ1 S, (Bernstein).

For completeness, we give the proofs here. In order to prove Jackson’s inequality,
we choose a function ye #(R), such that

1, u<i
X(“)_{o, uz1.

Put ¢(&)=x( "¢ and ,=M¢ M@ VEM—1). Obviously, ,eM,,
1<p<oco, by Lemma 6.1.5, with [,[,, independent of ¢t (Theorem 6.1.3).
Moreover, ¢, *feE, and @ xf—f=1t""j «I"f. Thus

Et.f; €, L)< a1 f L,

which gives (1). In order to prove Bernstein’s inequality, we put In ()= x(JE)/20)N,
with y as in the above proof and t=| f|,. Then, arguing as for xﬁ, above, we
have

Y1 = 1 S 1= 1F O 200 Ff 1, < CEML £,
which proves (2). O
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In view of Theorem 7.1.7, (1) is equivalent to
3) UK £ 8, L)< Oyl f ) 0.
Similarly, {2) implies that
S NN DL Cl flg, VDY D

Thus (HY)V™* D is of class €,y 1)(€, L,). Using the theorems, the numbers
of which stand above the equality signs, we obtain, with o >0,

(74.7)
B L) 278 L) s e )
B (L B0 e oes
CAZ0 0 1,
(645

{Theorem 3.7.1 is valid in the quasi-normed case too, as we remarked in Sec-
tion 3.11.) Therefore we have proved

7.2.4. Theorem. For any a>0 we have
E, (&, L,)=B;,.

This is a classical result on the best approximation by entire functions. A
particular case (r=c0, O0<a<1) is

E(t,.f; &, L)=0t""), t—cw,
if and only if

o, (t,/)=0("), 0.

73. Approximation of Operators

There is an analogy between the question of finding the approximation space
E, (Lo, L) and the question of approximation by means of operators of finite
rank. We sketch this analogy briefly.
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In this section, we let & (A4, B) stand for the space of all bounded linear

operators from the Banach space A to the Banach space B. We let &4(4, B)
denote the space of all such operators of finite rank. The norms are defined by

ITl e, 1,8=3UPay <11 Tals,
I Tl gy, 5y=rank T=dimT(A).

Now we consider the approximation number
E(t, T)=inf{|| T— S|l s, 15 rank S<t},
and the space © (4, B) (0<p< o) of all T such that
1Tl e, 5 =& EE T)PdD)".
From Theorem 7.1.7 and 7.1.8 we now infer that
(So(4, B), (4, B))j, ,yo=(C (4, B)’
if 8=p/(p+1) and thus
(8,4, B), €, (4, B)y ,=S (4, B)
if 1/p=(1—-06)/po+6/p;.
If A and B are Hilbert spaces, then & (4, B) consists of the p-nuclear opera-
tors from A to B. A linear operator T from A4 to B is p-nuclear if it can be repre-

sented in the form

Ta=Y3 A;<a,a;>b;,
where

Qilid)P<co, aille<t, lblis<1.

The norm of T is inf();|4,/#)"/?. (Cf. Exercise 11.)

74. Approximation by Difference Operators

In this section we consider the rate of convergence of difference operators.
Let G(t) be the solution operator for the initial value problem

ou
—+ P(D)u=0 " t>0
) 5 TPDu=0,  xeR’, >0,

u=f, xeR", =0.
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We assume that the differential operator P(D), with D as in 6.1, has constant
coefficients and that the polynomial P(¢) is positive for £#0 and positively
homogeneous of order m>0. The solution u of (1) is u=G(t)f. Clearly, G(t)
is the semi-group of operators considered in the example of Section 6.7. Thus

lull,, <CllflL,»
i.e. (1) is correctly posed.
We shall now approximate to the solution u of (1) by means of a function u,,

which is constructed as the solution of a discrete initial value problem of the
form

) {uh(x, t+k)=) eux+ah 1), =0,k 2k 3k,...,

u(x, 0)=f(x),
where k>0, and where acIR” are chosen with regard to P. Clearly, u, depends

linearly on f, so we can write u,(x, t)=(G,(¢)f)(x) where t=k, 2k, 3k,.... Gy k)
is given by the formula

(Gl ) (x) =Y s, f(x +ah).
From (2) we see that
u(x, )=(G (k¥ f)x), t=Nk, N=12,....

The operator G,(t) can be characterized by means of the Fourier transform.
In fact, we clearly have

FGk) ) (&) =ehe) (&),

where
e(n) = qe,expli<a, 1)

(the symbol of the difference scheme (2)). Therefore
F GO N)O=ehe) f(&), t=Nk.

Assuming that u,—u in L, and using the principle of uniform boundedness,
we see that the difference scheme (2) must be stable in the sense that

lupll, <Cl S, -

In terms of Fourier muitipliers, this condition could be rephrased as

&) SUpy=1,2,... 1€ n, < 0.
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Example: Let us consider the equation

ou_0u
ot ox%’
u=f, xeR, t=0.

xeR, >0,

In order to approximate to the solution u, we replace the differential operators
by difference operators. For instance, we may replace ou/dt by k™ '(u,(x, t +k)—
uy(x,1)) and 0*u/0x* by h™*(u,(x+h, t)—2u,(x, t)+u,(x —h, t)). Assuming that
kh~2=) (a positive constant), we thus replace the continuous initial value prob-
lem above by a discrete counterpart

{uh(x, t+ky=u,(x, 1)+ Muy(x +h, t) = 2u,(x, )+ u,(x —h, 1)),
uy(x, 0)=1(x).

In this case we therefore have

e(n)=1+Ae"—2+e" "),
i.e.
e(n)=1—44sin’(/2).
Here we have stability if 0<A<1/2. In fact,
le(lr, <1 =24+24=1 if 0<i<1/2.

Thus, by Theorem 6.1.2, if 0<A<1/2 then

1@, <1 0

We now return to the general case. Our objective is to study the rate of the
convergence of u,—u as h—0. More precisely, we want to find the space A7
of all feL, such that |G (1) f—G()f|,,<Ch’, h—0 (uniformly in t=k, 2k, ...,
k=An™). Clearly, we shall have to make some assumption on how fast u, con-
verges to u, when f is a nice function. This can be specified by means of assump-
tions on the difference e(h&)—exp(—kP(£)) or, equivalently, by means of assump-
tions on P,(&)— P(&), where

P (&)= —k~'loge(h®), h|¢| small.

7.4.1. Definition. Assume that k=Ah", m being the order of P(). Then we say
that P, approximates P with degree exactly s>0, if

P&)—PO)=HEI"*Q(hE),
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where Q(n) is infinitely differentiable on 0<|n|<e, and has bounded derivatives
there, and if

OM=Q0>0, O<pi<e,.
In the exampie considered above, we have

P(&)=—2"th™2log(1 —4isin(h/2)),
and ,

P()=¢>.
Then it is easily seen that
P(&)—PQ)=c,*|Z|* +d,h*E° +O°|E®),  hi¢|-0,

where ¢, =0 if and only if A=1/6 and d,,;#0. Thus P, approximates P of degree
exactly 2 if 1#£1/6 and of degree exactly 4 if 1=1/6.

7.4.2. Theorem. Assume that G,(t) is a stable difference operator in the sense of (3),
and that P, approximates P with order exactly s>0. Then
A;=Bj O<o<s, 1<p<w.

pwo?

Moreover, if feL,(1<p<co)and

limy, o sup, -y 2, . B °IG0) /=GO [, =0,
then f=0.

Proof : In order to prove Bj, < A7 we write, with ¢,=y,

”h_“=Zj>0(Gh(t)“G(t))¢j*f, t=Nk.
We shall establish the estimates

lexp(—tP,)—exp(—tP)l[,<C
and
I(exp(—tP,)—exp(—tP)Y 1. _1 @1 i,

< C(exp(— D2y —exp(— AR2™)(h2Y, h2i<e<ey/2,

where A>D>0 if ¢ is small enough, and $_,=0. These two estimates give
the desired inclusion, since Y /. _; @;4,*¢;=¢;,

B luy—ull ,< Y55 0h (GO — G g% |,
SC(Qpzi<.(exp(—Di2™) —exp(— Ar2™)
20205 B2 N S 150 SCIS I oo

luy—ul ,<CI f1%  (Theorem 6.2.4),



186 7. Applications to Approximation Theory
and thus, by interpolation,
B = ul ,<C[ [l O<a<s.

There remain the two estimates. The first one follows directly from the stability.
For the proof of the second one, we write
exp(—tP () —exp(—tP(£))
=t[E["(hIE 1) Q(hE)exp(—tP(E) foexp(rt IE1™ (hIE)F Q(hE)dr.

Invoking Theorem 6.1.3 and Lemma 6.1.5, we obtain

ll(exp(—tPy)—exp( —tP))le= 1Py la,
< Ce2™i(h29y exp(— Ar2™) (s exp(Bre2™i(h2/y)dr
< Clexp(— D2™)—exp(— A2™)(h27y, h2I<e<sy/2,
where A>0, D=A—Bs¢’, B>0. Clearly, D>0 if ¢ is small enough. This is the
second estimate.

The converse inclusion Aj<Bj, is implied by the following estimate, a
consequence of Theorem 6.1.3 and Lemma 6.1.5. We have, with t=Nk=2"",
h=1277, (j=2)

o/, <Clitexp(—tPy)—exp(—tP) ' Yl _; §jilln,
NG =GOV f1l,
SCh llexp(eP)(exp(—th* )& *QE) — 1) Yo 1 ®j1ilm,

<CH(h2))~5, for N large enough,
since

[D*exp(—(h2F|E"*Qh2E) - 1)< C(h2) ™ (471 < ¢ <4)
if I=h2/<g,/4, i.e. N is large enough. Note also that if we know that
sup, [|G(0)f—G(O)f ||, =o(h*)

then it follows that ¢;*f=0 for all j, i.e, that f=0. 0

75. Exercises

1. Let k be a given infinitely differentiable function such that lAc(f)=1 for
[€]<1/2 and k(£)=0 for {£|>1. Put k,{(x)=A"k(1x), xe R". Prove that

EQ f; €, L)=0(17%, Ai-co0,
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if and only if
“kﬂ.*f_fl}p=0()“_s)9 A_’w

2. (Lofstrom [2]). For keM,, let k; be given by F(k,)(&)=k(Z/2) (A>0). Prove
that the implication

feBy=lkxf—fll,=007),  i-c

holds if and only if for some ¢>0,C>0

() 1A EE =) @&/, <C, for O<r<e.

(Here ¢ is the standard function in the definition of Besov spaces.) Prove also that
if (1) holds then we have for O0<o<s

JeBy = lk+xf—f],=0(17").
3. (Shapiro [1]). For 6e M, we define g, as in the previous exercise. Put

D(t, f)=supys o *f .

Prove that if 6(&)#0 on |[¢|=1 and if peM_ can be written p(&)=3d(£)(¢)
in a neighbourhood of ¢=0, with e M, then there are constants C>0 and
¢>0 such that

D (t, )SCD{t, )+ Y=, D (er27%, f)).

4. (Shapiro [1]). Let ¢ be a real, bounded, non-vanishing measure on the real line
and assume that D_(t, f)=0(t?) as t—0. Prove that the modulus of continuity
,(t, f) of order m on L is given by

o9 if g<m,
w,(t, f) =4 0 Int/t) if g=m,
o™ if g>m.

5. (Lofstrom [2], Peetre [4]). Put
k&=(1-HE);, ¢teR

where H is infinitely diﬁferentiable and positive outside the origin and H(t&)=t"H(&)
for t>0. Prove that keM_ if a>(n—1)/2. Prove aiso that

[ky*f=flo =047, (O<s<m)

ifand only if feB; .

Hint: Use Exercise 18 in Chapter 6 and Exercise 3 above.
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6. In this and the next three exercises we conside the n-dimensional torus T”. Let
¢ be the standard function in the definition of the Besov spaces and let ¢, be the

function whose Fourier coefficients are (2 7%¢), £ Z" (Z is the set of all integers).
Let J} be the operator defined by

FINO=U+EP2f©), cexr,

where f(&) are the Fourier coefficients of f.
(a) Prove that || /g /], <C2% g *f .
(b) Define H,(T") by means of the norm

IAI=15 f 1,
Prove that the norm on
(L(T"), Hy(T"),, =B, (T, s=0N,
is equivalent to
1A= S 1+ Qo (2 @ f I

(c) Define the space B;,(T") by means of differentiability conditions as in
Theorem 6.2.5.

7. Let &° be the space of all trigonometric polynomials on T". Let
E (f)=E(m, f; &°, L,) be the best approximation of f (in L -norm) by trigono-
metric polynomials of degree at most m. Prove, using the method of Section 7.2,
the classical result

E(f)=0(m™%) ifandonlyif feB;,
Also, find the space of all feL,(T") such that

Qe wE(f)yn Hr<co.

8. (Lofstrém [2]). Prove by imitating the proof in Exercise 4 of Chapter 6, that if
g is infinitely differentiable and satisfies

lg¥(w)| < C;u~/ min(®, u™ ),

where o>0, §>0, then g(tH({)), (e Z" are the Fourier coefficients of a function
G,eL (T" and that

IGJ,<C, O<t<oo.
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9. (Lofstrom [2]). Put
J()=Qm) ™Y gmexpli<x, & — tH(8)) f (&)
for feL,(T"). Prove that
I f,—f1,=0() ifand onlyif feB: (T").
10. Show that
E(t.f; Lo, L) =(J*(f*(s))?ds)”"  (0<p< o).

Deduce from this the inequality in the proof of the Marcinkiewicz theorem
given in 1.3.

Hint: Theorem 7.2.2.

11. (Peetre-Sparr [1]). Denote by 4 ,=.4",(4,B) the space of all p-nuclear
operators (cf. 7.3) from the Banach space A to the Banach space B. Prove that

N, =, O<p<t,t/g>1/p-1),
SN, (O<p<oo).

Hint: Use the result in Section 3, and apply Auerbach’s lemma: If rank(T)<n
then

Ta=}}_ 4 {aa} b,

where | aill =1, |bllg<1, and there exist bieB' such that {(b,b>=4¢,; and
il g <1.

12. (Peetre [19]). Denote by A ,4(A4,B) the set of (bounded linear) operators T: 4~ B,
A,B being Banach spaces, such that the induced operator T: 4,(4)—[,(B)is bounded,
where L(B)={(b) , | Y, Ib,l4< 00} and 4,(4)={(a)z, | 1Y 6., (< C for
all (e)@ 152 le,* <1,1/a+1/d’=1}. Show that

TGAaB(AO, BO)mAaB(Ah B,)
implies that

TeA 5(A ), 050 Bioy, )
if A is quasi-linearizable (see Exercise 6, Chapter 3) and [2(a(t)/p(t)/dt/t < 0.
Here

Ay px={ae Z(A)|([§ (K(t, )/ p(t)Pdt/1)"/P < o0}

and p is positive function; p=co has the usual meaning.
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Hint: Note that if a>1 then A,(4)=L(l,, 4),1/a+1/e'=1, and, interpolating
T, §h0W that T: ()va(Ao)’ la(A 1))(p),oo;K“’(lﬂ(Bo)s l;;(B1))(p),oo;K C(Ip(Bo)s lﬂ(Bl))(a-),ﬁ;K =
LBy p:x)-

13. Consider the torus T Show that the couple (C° C!) is quasi-linearizable
(see 3.13.6). Generalize to the semi-group case.
Hint: Put Vi) f(x)=1/2t f’_ [falx)—a(x+h))dh and use the formula for
K(t, £, C° C') in Section 6.
14. (Bergh-Peetre [1]). Let V, be defined as in Section 6. Show that

Voo VooV, (0<6<1)
if 1/p=(1-6)/p,+6/p, and 1/k<p,<co.

15. (Bergh-Peetre [1]). Prove that if fis an entire function of exponential type at
most r and feL,(1/k<p<1) then

Ifly, <Crl fl,

Hint: (i) By Plancherel and Pélya (see Boas [1]) || f®|,, <Clflly, (r=1).
(i) For any discrete subset X <R, such that [x—y|>1 if x,yeX and x#y,
Qeex /)P C| f1,. (ili) Split # into two families, one containing pre-
cisely those intervals I, for which [I|>1.

16. (Bergh-Peetre [1]). Prove that if 1/k<p< oo then

31/ 31/
Bppfc VPCBpog’
where p*=min(1, p).
Hint: (i) Use the two previous exercises and interpolate. (ii) Use Exercise 6 in
Chapter 6.

For the exercises 17—22 we give Brenner-Thomée-Wahlbin [1] as a general
reference. In that work the reader will find a complete list of references.

17. Consider the one-dimensional heat-equation ou/dt=0%u/0x> with the
initial value u=f at t=0. Let G,(t) be a stable difference operator on L, and
assume that the corresponding operator P, approximates P= —D? with order
exactly s. Then we know from Theorem 7.4.2 that if

[GW8) f—G(@t) fI| , <Ch® uniformly in t=Anh?,
then feB? . Now prove that if o>1 and
1G) f—G() fll . <Ch®, t=2Anh* fixed

then feB? !
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Hint: Take t=1 and start with the estimate
”(pj*f“oo<Z2J’*1$|m|sza‘+1‘|(Pj*'0/~_lgm*f|‘w,

where ¢,()=g((—m) and ) ,g(l—m)=1.
18. Let the assumptions of the previous exercise be satisfied and assume in addition

that if e(¢) is the symbol of the difference scheme then |e(¢)| <exp(—c&2), where
¢>0. Prove that

1GH) f= GO fll o <Ct™ 2 h | f1I5,,

if 1<o<s.

Hint: Note that ||[# 'af|,<Cla]|fll;. Use the proof of Theorem 7.4.2,
but estimate the L,-norm of exp(—tP,(&)) —exp( —t&?).

19. Consider the one-dimensional Schrédinger equation du/dt=id*u/dx* with

the initial value u=f at t=0. Let G,(t) be a stable difference scheme on L,
and assume that the corresponding operator P, approximates i D* with order s.

(a) Prove that
1GO) f=GO fl. < Crl | fI57°,  t=Anh?<T.
Deduce that for O<a<s
IGH) =G, < Crh | SIS F9F,  t<T.
(b) Prove that
1GH8) f=G) fll o SCok | fIBT° 12, t<T,
and for O<o<s,
1GH8) f=GWO) fll o < Coh® | fISETIRFI2, 1< T.
20. Let Q, be the set of all {=({,,...,¢,) such that [&[<r for j=1,...,n. Write
(Pe=P)={o, f(x+x)dx,
(Ec)(x) =) sc,x(x —),

where y is the characteristic function of Q,.

(a) Writing T, for the mapping f—% ~!af prove that PT,E is the mapping

(ca)a‘*(zﬂ cﬂPa —ﬂ( T2,
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(b) Prove that there is an infinitely differentiable function ¢ with compact
support such that

12ab(-+ 270 g, < cllbllag, < SUPcey, (P T, E)O, s
provided that b vanishes outside Q.. Deduce that
|3+ 27}y < C bl -

(c) Suppose that a is infinitely differentiable and 2r-periodic. Let # be infinitely
differentiable and assume that 5(x}=1 on Q,, n(x)=0 outside Qs ,. Prove that

lally, < Cllnallp,-
21. Assume that e is the symbol of a difference operator and that e(&)=exp(i6(¢))

where 8 is real, twice differentiable on [¢]<1 and 6"(£)#0 for |&|<1. Use the
previous exercise to prove that

le(-Ylly,<Cr,  p=1/2—1/pl.

22. Consider the one-dimensional wave-equation du/dt=0u/0x, u=f at t=0.
Let G,t) be a difference operator with symbol e({) satisfying the assumptions
of the previous exercise and assume that P, approximates D with order s. Prove
that

1Gyt) =GO fIl, < Ch* | f15, t=Anh<T,

where

(0) = o—p if O<o<(s+1)p,
D9 = os/s+1) if (s+1)p<o<s+1

and 0<o<s+1.
23. (Lofstrom-Thomée [1], Peetre [17]). Prove, using induction on N, that
1D wll <clwlly (w3,

if 0<f=y|/N<1, g=2/0. (The norms are the norms in L,(R"), L (R") and
HY(IR") respectively.) Use this result to show that

ID* fWill, < Cp (Iwll o, + DY H(wlZ + 1),
if ||=N,weL_nHY and fe&. Show that if in addition f(0)=0, then
weBS,=f(weB,, (s=n/2).

(Cf. Exercise 9 and 10 of Chapter 3.)
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24. Consider the non-linear initial value problem

dufdt=Ccufdx+putt,  t>0, xeR,

u(0, x)=w(x), xeR

where p is a non-vanishing constant and r a positive integer. Prove that for a
given weL =L _(IR) there is a unique solution u(t,x), defined and bounded on
0<t<T xeR for some T Find the upper bound for T, in the three cases

1) p>0, (1) p<O, r odd, (iii) p<0, r even.

Finally prove that if weBj, then u(t, )eB5, for s>1/2.

7.6. Notes and Comment

The possibility of applying interpolation techniques, as we have described them,
to approximation theory was indicated by Peetre [10] in 1963. Since then, inter-
polation has been used in connection with, e.g, approximation by rational
functions and by spline functions, trigonometric approximation, approximation
by eigenfunction expansions in general, moment problems and the other topics
treated in the previous sections of this chapter. (See, e. g., the works of P.L. Butzer
and his coauthors mentioned below.)

Approximation by spline functions and by rational functions are closely
related. See Peetre-Sparr [1] and Peetre [23]. Approximation by spline functions is
considered also by Bergh-Peetre [1] in connection with spaces ¥ (0<p<oo) of
functions of bounded variation on the real line. (See also Brudnyi [2].) More
precisely, given a fixed integer k>1 with k™'<p<co, V, is the linear spaces
of all measurable, locally bounded functions on R, such that, for every family
F={I} of disjoint intervals I=(a,b),

(Y1eq Gnf, gsup, ;| f(x) —m(x)))P<C,

where C is independent of # and #=4, denotes the space of all polynomial
functions on R of degree at most k—1. The (quasi-) norm on V, is the supremum
of the right hand side over all families #. The approximation result is the following:
Let f belong to the closure of 2 (infinitely differentiable functions with compact
support ) in suprenuim norm. Then

infgs Spl(N)Supst lf(x) '—‘g(X)] = O(N_ Ilp) (N—} + CXJ)
iff

fE(V(l)/bCO)G,oo (1/p=01—-0)k),
where Spl(N) consists of functions with compact support such that

f(k+1)(x)=zy:1Aj5(x_aj) (in 2'),
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and the superscript ° signifies “the closure of @ in the respective norms. In our
notation, this result could be rewritten as:

(SpLCO)l/p,oo;E =(V(1)/k3 Co)o,ao;lo

provided that 1/p=(1—6)k. The relation between the spaces ¥, and the spaces
B}, is the subject of Exercises 14—16. The proof of the approximation result is
based on two inequalities of Jackson and Bernstein type. Once these inequalities
are established, it only remains to characterize the space (V{,,C%, ,.x- This is
done via a formula for the K-functional. (Cf. the proof of Theorem 7.2.4.)
Consider now the couple (C°, C'), where C° is the space of bounded real-valued
uniformly continuous functions on the real line IR, and C*! is the subspace con-
taining those which have their first derivative in C°. The (semi-) norms are

IS lco=supg[f (x)],

I/ ler =supg 1D 1 (x)]
respectively. Peetre [14] has shown that

K(t.f; C° CYy=50*(2t,f),
where o is the modulus of continuity of f:

@(, f)=SUP, g SUPpy <L/ (x +h)=f (X)],

and w* is the least concave majorant of w. From this formula it follows that

sup, K(t, f)/(t) = sup, oz, f)/2¢(¢/2) ,

where ¢ is positive and concave. We may interprete the last formula as saying
that any Lip{(¢(-)) space is a K-interpolation space with respect to the couple
(C° C") if ¢ is concave. Conversely, Bergh [1] has shown that if Lip(e(-)) is an in-
terpolation space with respect to the couple (C°% C*) then ¢ is essentially concave
(see Bergh [1] for precise statements). The formula for K(z,f; C° C') may also
be seen from the point of view of approximation theory. Consider now the torus
T instead of the real line IR. The same formula for K(t, f) holds in this case.
Kornejéuk [1] has shown that (¢ concave)

E(n—1,f;C°, T)<}o(n/n)
i .
S eLip(e(),

where T is the space of trigonometric polynomials and | f}i; is the degree of f.
The connection between E and K is provided by the inequality

E(n—1,1;C° T)< K(n/2n, f; C°, CY).

(See Peetre [14] for details.)
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A formula for the functional K(t, a;C° C?) has recently been found by
J. Friberg, who also has established related approximation results.

7.6.1.—2. The exposition of these sections follows closely that of Peetre-Sparr [1].

As we stated in Chapter 1, the classical results by Jackson [1] and Bernstein [1]
from 1912, corresponding to (1) and (2) of Section 2, were given for the torus T
and supremum norms. Cf, e.g., Lorentz [3].

Theorem 7.2.4, a consequence of (1) and (2), stated for IR” also holds, mutatis
mutandis, for the torus T”. This is proved in quite a similar way (see Exercise 6,7).
Partially corresponding results hold when O<p<1 (cf. Peetre [23]). Note that
Theorem 7.2.4 gives yet another possible way of defining the spaces B;,, at
least for >0 and 1<p< 0.

Many applications of interpolation theory to approximation theory can
be found in the book of Butzer-Behrens [1], which also contains a large list of
references. (See also Butzer-Nessel [1].) There are several conference proceedings
with applications to approximation theory and harmonic analysis (and with
valuable lists of references), for instance Butzer-Nagy [1] (see notably the articles
by Bennett [3], Gilbert [2] and Sagher [4]), Butzer-Nagy [2], Butzer-Kahane-
Nagy [1]. See also Alexits-Ste¢kin [1] where a survey article by Peetre [25] can be
found.) Other applications to approximation theory and harmonic analysis are
given in Peetre [3,4,8,11,22,23], Lofstrém-Peetre [1], Peetre-Vretare [1],
Lofstrom [1,2,3], Sagher [4], Varopoulos[1], Hedstrom-Varga [1]. (See also the
exercises.)

7.6.3. There are several papers concerning the interpolation of ideals of operators.
Apart from the work of Peetre-Sparr [1] (and references given there) we mention
here the works of Pietsch [1,2], Pietsch-Triebel [1], Triebel [2], Peetre [24],
Merucci-Pham the Lai [1], Favini [1], Gilbert [2]. (See also Gohberg-Krein [1]
and Peetre-Sparr [2].)

7.6.4. This section is taken over from Lofstrom [2]. Further results are given in
the exercises.

An important inspiration for interpolation theory is the theory of partial
differential equations. Conversely interpolation theory has been applied to
partial differential equations. We mention here the books of Lions-Magenes [2].
(See also Lions [4], Tartar [ 1], Triebel [ 1,3].) Applications to numerical integration
of partial differential equations has been given by several authors. We refer the
reader to the lecture notes by Brenner-Thomée-Wahlbin [1] and the references
given there.

Interpolation theory has been applied to the theory of non-integer powers of
operators. See Komatsu [1] for a systematic treatment. Other related papers
(using interpolation theory) are Yoshikawa [2], Yoshinaga [1].
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